SEW减速机参数查询 2-2 实践

2024-04-17 13:44

本文主要是介绍SEW减速机参数查询 2-2 实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先说说结论:在不和SEW官方取得沟通之前,你几乎无法直接通过查阅SEW官方文档得到相关减速机的所有技术参数:比如轴的模数和齿数,轴承的参数。我在周一耗费了一个上午,最终和SEW方面确认后才知晓相关技术参数需要凭借销售合同查询。不过,也把我做的搜集和尝试列在后面。

前面的参数查询里,漏掉了一种减速机,就是行星齿轮减速机。这个产品的故障频点需要另行分析。

1.一个失败的尝试 

案例一 Gear reducer 32.38:1 ST77DT100L4-KS 二手价 290刀
这个减速机是在bing.com上搜索"SEW gearbox ratio 35.5 tag",随机找到一个铭牌:
 

注意sn = 890036862.08.07.001

1.1 SEW资料库的资料全集:

首先在SEW资料库里找到,因为有序列号。

https://www.sew-eurodrive.cn/os/dud/?tab=productdata&country=CN&language=zh_cn1

1.1.1 产品参数:

从产品参数页面可以知道:

  • 变速比32.38
  • 460V/60Hz的电压是美标电机
Catalog designationST77DT100L4-KS
Product data 
Serial number                       890036862.08.07.001
Gear ratio                          32.38
Output speed                        52
Mounting position                   M4B
Shaft diameter                      NP-NS
Terminal box position               0
Cable entry at terminal box         X
Output torque (lb-in)               5375
Service factor                      1.7
Motor power                         5
Motor voltage                       230YY/460Y
Frequency                           60
Wiring diagram                      DT79
Rated current                       13.6/6.8
KVA Code                            G
Thermal class                       F
Other                               CB@0, CE X, Bore Size=1 5/8  
Weight on request

2.原始资料搜集和故障频点计算.py程序(片段)

频点计算部分可以自动进行。我现在的做法是使用.json搜集相关信息,然后使用python自动计算,请参见附录A,附录B.

最终我们需要计算出相关的故障频点有多少,分别隶属于哪根轴,哪个齿轮,那个轴承。在故障发生后,还需要反向查询这个故障频点表,来搜索出可能出问题的故障源。这个过程,无需人工参与,是可以自动计算的。

附录A 机械设备相关振动配置信息搜集(.json)

仅仅是一个示例

{"author": "fengxh","desc": "产品的一级参数录入,注意不要混入任何可以自动计算的结果","json_format": "1.0","created": "Apr16,2024","last_modify": "Apr16,2024","CAD_file": "xxxxx.pdf","unit": {"engine": {"type": "xxxx","manualfacture": "xxxx","PinKw": 30,"type_rpm": 730},"gearbox": {"type": "xxxxx","ratio": 75.577,"shaft_in": {"desc": "变速箱输入轴","memo": "输入轴 - 一个外齿轮,一个输入大齿轮,一个输出小齿轮,2个轴承","gear": [{"type": -1,"memo": "外齿轮","module": -1,"tooth": -1},{"type": -1,"memo": "输入大齿轮","module": -1,"tooth": -1},{"type": -1,"memo": "输出小齿轮","module": -1,"tooth": -1}],"bearing": [{"type": -1,"memo": "动力端轴承","outer_edge_D_in_mm": -1,"inter_edge_D_in_mm": -1,"ball_D_in_mm": -1,"ball_cnts": -1},{"type": -1,"memo": "随动轴承","outer_edge_D_in_mm": -1,"inter_edge_D_in_mm": -1,"ball_D_in_mm": -1,"ball_cnts": -1}]},"shaft_inter": [{"sn": 1,"desc": "变速箱二级输入轴","memo": "中间轴 - 一个输入大齿轮,一个输出小齿轮,2个轴承","gear": [{"type": -1,"memo": "输入大齿轮","module": -1,"tooth": -1},{"type": -1,"memo": "输出小齿轮","module": -1,"tooth": -1}],"bearing": [{"type": -1,"memo": "动力端轴承","outer_edge_D_in_mm": -1,"inter_edge_D_in_mm": -1,"ball_D_in_mm": -1,"ball_cnts": -1},{"type": -1,"memo": "随动轴承","outer_edge_D_in_mm": -1,"inter_edge_D_in_mm": -1,"ball_D_in_mm": -1,"ball_cnts": -1}]},{"sn": 2,"desc": "变速箱三级输入轴","memo": "中间轴 - 一个输入大齿轮,一个输出小齿轮,2个轴承","gear": [{"type": -1,"memo": "输入大齿轮","module": -1,"tooth": -1},{"type": -1,"memo": "输出小齿轮","module": -1,"tooth": -1}],"bearing": [{"type": -1,"memo": "动力端轴承","outer_edge_D_in_mm": -1,"inter_edge_D_in_mm": -1,"ball_D_in_mm": -1,"ball_cnts": -1},{"type": -1,"memo": "随动轴承","outer_edge_D_in_mm": -1,"inter_edge_D_in_mm": -1,"ball_D_in_mm": -1,"ball_cnts": -1}]}],"shaft_out": {"desc": "变速箱输出轴","memo": "输出轴 - 一个输入齿轮,2个轴承","gear": [{"type": -1,"memo": "输入大齿轮","module": -1,"tooth": -1}],"bearing": [{"type": -1,"memo": "动力端轴承","outer_edge_D_in_mm": -1,"inter_edge_D_in_mm": -1,"ball_D_in_mm": -1,"ball_cnts": -1},{"type": -1,"memo": "随动轴承","outer_edge_D_in_mm": -1,"inter_edge_D_in_mm": -1,"ball_D_in_mm": -1,"ball_cnts": -1}]}},"final_output": {"name": "齿轮齿条摇架","gear": [{"type": -1,"memo": "输入外齿轮","module": 20,"module_scale": "mm","tooth": 16},{"type": -1,"memo": "齿条","module": 20,"module_scale": "mm","length": 4631}]},"smooth_oil": {"desc": "润滑液","std_tempeature": -1,"deadline_tempeature": -1}}
}

附录B 故障频点自动解析程序(.py)

并不完整,仅显示部分逻辑。可以逆推处理的方法。

''''
''''class GpGearDesc:def __init__(self, module, tooth, ratioOfShaft):self.module = moduleself.tooth = toothself.ratioOfShaft = ratioOfShaftself.ratioOfGear = ratioOfShaft*toothdef __hash__(self):# 返回一个哈希值,通常可以使用内置类型的哈希值,比如元组return hash((self.module, self.tooth))def __eq__(self, other):# 定义相等性判断逻辑return isinstance(other, GpGearDesc) and (self.module == other.module) and (self.tooth == other.tooth)def __str__(self):return str("gear.errFreq:%8.3f, with(shaftRatio=%8.3f, module=%8.3f, tooth=%8.3f" (self.ratioOfGear, self.ratioOfShaft, self.module, self.tooth))def __repr__(self):return f"GpGearDesc('moudle = {self.module}', tooth = {self.tooth})"''''
''''
def getVibrationSensorList_v1(filename):# 读取JSON文件sensor_data={}with open(filename, 'r', encoding='utf-8') as file:sensor_data = json.load(file)# 初始化温振型传感器数量total_temperature_vibration_sensors = 0# 遍历每个单元sensor_location = []for unit in sensor_data["sensors"]:# 获取当前单元的温振型传感器数量unit_temperature_vibration_sensors = sum(unit["sensors"]["温振型"].values())locations =  unit["sensors"]["温振型"].keys();cntOfLocation =  unit["sensors"]["温振型"].values();for loc in unit["sensors"]["温振型"]:for j in np.arange(unit["sensors"]["温振型"][loc]):sensor_location.append(unit["unit"] + "\\" + loc + "\\" + str("%02d" %j))# 将当前单元的数量添加到总数中total_temperature_vibration_sensors += unit_temperature_vibration_sensors# 打印总数print("总温振型传感器数量:", total_temperature_vibration_sensors)     print(sensor_location)return sensor_locationdef doGearsOfShaft(gearsArray, shaftRpm, shaftName, arGear, last_gear_tooth):gearIdx = 1for gear in gearsArray:gearName = str(shaftName+"\\gear\\%d" %gearIdx)gearRpmRatio = shaftRpm;gearTooth = gear["tooth"]gearModule = gear["module"]arGear |= {gearName: GpGearDesc(gearModule, gearTooth, gearRpmRatio)}gearIdx=gearIdx+1last_gear_tooth = gearToothreturn last_gear_toothdef doBearingsOfShaft(bearingArray, shaftRpm, shaftName, arBearing):bearingIdx = 1for bearing in bearingArray:bearingName = str(shaftName +"bearing\\%d" %bearingIdx)outer_edge_D_in_mm = bearing["outer_edge_D_in_mm"]inner_edge_D_in_mm = bearing["inter_edge_D_in_mm"]ball_D_in_mm = bearing["ball_D_in_mm"]ball_cnts = bearing["ball_cnts"]arBearing |= {"bearingName": GpBearingDesc(outer_edge_D_in_mm*1e-3, inner_edge_D_in_mm*1e-3, ball_D_in_mm*1e-3, ball_cnts, shaftRpm)}bearingIdx += 1def getVibrationUnitsOf(arJsonFiles):ret=[]# 遍历每个单元arShaft = {}arGear = {}arBearing = {}for filename in arJsonFiles:# 读取JSON文件sensor_data={}with open(filename, 'r', encoding='utf-8') as file:sensor_data = json.load(file)# 初始化温振型传感器数量total_vibration_units = 0last_gear_tooth = -1for unit in sensor_data["unit"]:if "gearbox" == unit:shaftRpm = 1.0;if("shaft_in" in sensor_data["unit"]["gearbox"].keys()):si = sensor_data["unit"]["gearbox"]["shaft_in"]shaftName = filename + "\\gearbox\\shaft_in";shaftRpm = shaftRpm*si["gear"][0]["tooth"]/si["gear"][1]["tooth"]arShaft |= {shaftName:shaftRpm}last_gear_tooth = doGearsOfShaft(si["gear"], shaftRpm, shaftName, arGear, last_gear_tooth)doBearingsOfShaft(si["bearing"], shaftRpm, shaftName, arBearing)if("shaft_inter"):rpmUpdated = False;for si in sensor_data["unit"]["gearbox"]["shaft_inter"]:if not (rpmUpdated):shaftRpm = shaftRpm*si["gear"][0]["tooth"]/last_gear_toothrpmUpdated = TrueshaftName = filename + "\\gearbox\\shaft_inter";arShaft |= {shaftName:shaftRpm}last_gear_tooth = doGearsOfShaft(si["gear"], shaftRpm, shaftName, arGear, last_gear_tooth)doBearingsOfShaft(si["bearing"], shaftRpm, shaftName, arBearing)if("shaft_out" in sensor_data["unit"]["gearbox"].keys()):si = sensor_data["unit"]["gearbox"]["shaft_out"]shaftRpm = shaftRpm*si["gear"][0]["tooth"]/last_gear_toothshaftName = filename + "\\gearbox\\shaft_out";arShaft |= {shaftName: shaftRpm}last_gear_tooth = doGearsOfShaft(si["gear"], shaftRpm, shaftName, arGear, last_gear_tooth)doBearingsOfShaft(si["bearing"], shaftRpm, shaftName, arBearing)# 打印总数#return (arShaft, arGear, arBearing)

这篇关于SEW减速机参数查询 2-2 实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/911956

相关文章

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员