通过超分辨率像素引导的Scribble Walking和逐类对比正则化的弱监督医学图像分割(SC-Ne)论文速读

本文主要是介绍通过超分辨率像素引导的Scribble Walking和逐类对比正则化的弱监督医学图像分割(SC-Ne)论文速读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization
    • 摘要
    • 方法
    • 实验结果

Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization

摘要

基于深度学习的分割通常需要大量数据和密集的手动描绘,这既耗时又昂贵。因此,弱监督学习试图利用稀疏的注释(如涂鸦)进行有效训练,引起了相当大的关注。然而,这种涂鸦监督本质上缺乏足够的结构信息,导致了两个关键挑战:(i)虽然在dice分数指标上取得了良好的性能,但现有方法难以执行令人满意的局部预测,因为在训练期间无法获得所需的结构先验;(ii)由于稀疏和极不完全的监督,类特征分布不可避免地不那么紧凑,导致泛化性差。

本文中,我们提出了SC-Net,这是一种新的涂鸦监督方法,它将超像素引导的涂鸦行走与类对比正则化相结合。
该框架建立在最近的双解码器主干设计之上,其中来自两个略有不同的解码器的预测被随机混合,以提供辅助伪标签监督。除了稀疏和伪监督外,涂鸦还向超像素连接和图像内容引导的未标记像素扩散,以提供尽可能多的密集监督。然后,类对比正则化断开不同类的特征分布,以促进类特征分布的紧凑性。

方法

在这里插入图片描述
在这里插入图片描述

采用简单的线性迭代聚类(SLIC)算法来生成超像素
SLIC工作原理: 首先将图像划分为大小相等的方块网格,然后根据所需的超像素数 K 在每个方块中选择一定数量的种子点。接下来,它根据每个像素的颜色相似度和空间邻近性(距离)迭代地将每个像素分配给最近的种子点。重复此过程,直到聚类收敛或达到预定义的迭代次数。最后,该算法将种子点的位置更新到相应超像素的质心,并重复直到收敛。因此,图像被粗略地分割成 K 个簇。
然后,在获得的超像素的引导下,涂鸦通过以下机制走向未标记的像素:
(i)如果超像素簇与涂鸦重叠,则 涂鸦r 走向该簇中包含的像素;
(ii) 然而,如果超像素簇不与任何涂鸦重叠或与多个涂鸦重叠,则不会为该簇中的像素分配任何标签。尽管我们使用严格的行走约束来扩展标签,但超像素主要基于颜色相似性和与种子点的空间邻近性

采用noise-robust Dice loss来监督模型,公式为:
在这里插入图片描述

成对的对比正则化如下:z为原型,N为原型的数量
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实验结果

在这里插入图片描述
在这里插入图片描述

这篇关于通过超分辨率像素引导的Scribble Walking和逐类对比正则化的弱监督医学图像分割(SC-Ne)论文速读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911887

相关文章

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

exfat和ntfs哪个好? U盘格式化选择NTFS与exFAT的详细区别对比

《exfat和ntfs哪个好?U盘格式化选择NTFS与exFAT的详细区别对比》exFAT和NTFS是两种常见的文件系统,它们各自具有独特的优势和适用场景,以下是关于exFAT和NTFS的详细对比... 无论你是刚入手了内置 SSD 还是便携式移动硬盘或 U 盘,都需要先将它格式化成电脑或设备能够识别的「文