通过超分辨率像素引导的Scribble Walking和逐类对比正则化的弱监督医学图像分割(SC-Ne)论文速读

本文主要是介绍通过超分辨率像素引导的Scribble Walking和逐类对比正则化的弱监督医学图像分割(SC-Ne)论文速读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization
    • 摘要
    • 方法
    • 实验结果

Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization

摘要

基于深度学习的分割通常需要大量数据和密集的手动描绘,这既耗时又昂贵。因此,弱监督学习试图利用稀疏的注释(如涂鸦)进行有效训练,引起了相当大的关注。然而,这种涂鸦监督本质上缺乏足够的结构信息,导致了两个关键挑战:(i)虽然在dice分数指标上取得了良好的性能,但现有方法难以执行令人满意的局部预测,因为在训练期间无法获得所需的结构先验;(ii)由于稀疏和极不完全的监督,类特征分布不可避免地不那么紧凑,导致泛化性差。

本文中,我们提出了SC-Net,这是一种新的涂鸦监督方法,它将超像素引导的涂鸦行走与类对比正则化相结合。
该框架建立在最近的双解码器主干设计之上,其中来自两个略有不同的解码器的预测被随机混合,以提供辅助伪标签监督。除了稀疏和伪监督外,涂鸦还向超像素连接和图像内容引导的未标记像素扩散,以提供尽可能多的密集监督。然后,类对比正则化断开不同类的特征分布,以促进类特征分布的紧凑性。

方法

在这里插入图片描述
在这里插入图片描述

采用简单的线性迭代聚类(SLIC)算法来生成超像素
SLIC工作原理: 首先将图像划分为大小相等的方块网格,然后根据所需的超像素数 K 在每个方块中选择一定数量的种子点。接下来,它根据每个像素的颜色相似度和空间邻近性(距离)迭代地将每个像素分配给最近的种子点。重复此过程,直到聚类收敛或达到预定义的迭代次数。最后,该算法将种子点的位置更新到相应超像素的质心,并重复直到收敛。因此,图像被粗略地分割成 K 个簇。
然后,在获得的超像素的引导下,涂鸦通过以下机制走向未标记的像素:
(i)如果超像素簇与涂鸦重叠,则 涂鸦r 走向该簇中包含的像素;
(ii) 然而,如果超像素簇不与任何涂鸦重叠或与多个涂鸦重叠,则不会为该簇中的像素分配任何标签。尽管我们使用严格的行走约束来扩展标签,但超像素主要基于颜色相似性和与种子点的空间邻近性

采用noise-robust Dice loss来监督模型,公式为:
在这里插入图片描述

成对的对比正则化如下:z为原型,N为原型的数量
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实验结果

在这里插入图片描述
在这里插入图片描述

这篇关于通过超分辨率像素引导的Scribble Walking和逐类对比正则化的弱监督医学图像分割(SC-Ne)论文速读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911887

相关文章

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y