【二分查找】Leetcode 74. 搜索二维矩阵【中等】

2024-04-17 10:12

本文主要是介绍【二分查找】Leetcode 74. 搜索二维矩阵【中等】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

搜索二维矩阵

给你一个满足下述两条属性的 m x n 整数矩阵:

  • 每行中的整数从左到右按非严格递增顺序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。

示例 1:
在这里插入图片描述
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true

解题思路1

  • 1、从矩阵的右上角开始查找。
  • 2、如果当前元素等于目标值,则返回true。
  • 3、如果当前元素大于目标值,则说明目标值在当前元素的左侧列,列索引减1。
  • 4、如果当前元素小于目标值,则说明目标值在当前元素的下方行,行索引加1。
  • 5、重复步骤2-4,直到找到目标值或者超出矩阵边界。

Java实现1

public class SearchMatrix {public boolean searchMatrix(int[][] matrix, int target) {if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {return false;}int rows = matrix.length;int cols = matrix[0].length;int row = 0;int col = cols - 1;while (row < rows && col >= 0) {if (matrix[row][col] == target) {return true;} else if (matrix[row][col] > target) {col--;} else {row++;}}return false;}public static void main(String[] args) {SearchMatrix solution = new SearchMatrix();int[][] matrix = {{1,3,5,7},{10,11,16,20},{23,30,34,60}};int target = 34;System.out.println("Target exists: " + solution.searchMatrix(matrix, target)); // Output: true}
}

时间空间复杂度1

  • 时间复杂度:O(m + n),其中m为矩阵的行数,n为矩阵的列数。因为每次迭代都会将行索引或列索引移动一次,最多移动m + n次。

  • 空间复杂度:O(1)。

解题思路2

  • 1、首先对第一列进行二分查找,找到最后一个小于等于 target 的元素所在的行。
  • 2、在找到的行中进行二分查找,确定 target 是否在该行中。

Java实现2

public class SearchMatrix {public boolean searchMatrix(int[][] matrix, int target) {int m = matrix.length;int n = matrix[0].length; 二分查找第一列,找到最后一个小于等于 target 的元素所在的行int left = 0;int right = m - 1;while (left <= right) {int mid =  (left + right ) / 2;if (matrix[mid][0] == target) {return true;} else if (matrix[mid][0] < target) {left = mid + 1;} else {right = mid - 1;}}// 如果目标值不在矩阵的第一列,则在确定的行中继续进行二分查找if (right >= 0) {//确定搜索行数int row = right;left = 0;right = n - 1;while (left <= right) {int mid =  (left + right ) / 2;if (matrix[row][mid] == target) {return true;} else if (matrix[row][mid] < target) {left = mid + 1;} else {right = mid - 1;}}}return false;}public static void main(String[] args) {SearchMatrix solution = new SearchMatrix();int[][] matrix = {{1,3,5,7},{10,11,16,20},{23,30,34,60}};int target = 34;System.out.println("Target exists: " + solution.searchMatrix(matrix, target)); // Output: true}
}

时间空间复杂度2

  • 时间复杂度为 O(log m + log n),其中 n 是矩阵的列数,m 是矩阵的行数。
  • 空间复杂度:O(1)。

这篇关于【二分查找】Leetcode 74. 搜索二维矩阵【中等】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911515

相关文章

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C#实现查找并删除PDF中的空白页面

《C#实现查找并删除PDF中的空白页面》PDF文件中的空白页并不少见,因为它们有可能是作者有意留下的,也有可能是在处理文档时不小心添加的,下面我们来看看如何使用Spire.PDFfor.NET通过C#... 目录安装 Spire.PDF for .NETC# 查找并删除 PDF 文档中的空白页C# 添加与删

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

C# ComboBox下拉框实现搜索方式

《C#ComboBox下拉框实现搜索方式》文章介绍了如何在加载窗口时实现一个功能,并在ComboBox下拉框中添加键盘事件以实现搜索功能,由于数据不方便公开,作者表示理解并希望得到大家的指教... 目录C# ComboBox下拉框实现搜索步骤一步骤二步骤三总结C# ComboBox下拉框实现搜索步骤一这

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c