概率论 —— 相关分布以及期望方差的求法汇总

2024-04-17 04:58

本文主要是介绍概率论 —— 相关分布以及期望方差的求法汇总,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

离散型

1. 两点分布(伯努利分布)
在一次试验中,事bai件A出现的概du率为P,事件A不出现的概率为q=l -p,若以X记一次试zhi验中A出现的次数,则X仅取0、I两个值。

两点分布是试验次数为1的伯努利试验。

2. 二项分布
是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变。

二项分布是试验次数为n次的伯努利试验。

EX=np,DX=np(1-p)

3. 超几何分布
在这里插入图片描述一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品数
记作X-H(N.M.n),其E(X)=nM/N

DX=E(X-EX)²
=E(X²)-2E(X)E(X)+E²(X)
=E(X²)-E²(X)
在这里插入图片描述

4. 泊松分布

在这里插入图片描述泊松过程是一个计数过程。
在0-t时与0-t+s时事件发生的次数独立且同服从参数为lamada的泊松分布。
这样按照时间走下来事件发生的次数就是一个泊松过程。

P(λ) E(X)=λ D(X)=λ
 
 

连续型

1. 均匀分布

在这里插入图片描述
在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。

均匀分布的概率密度函数为:
在这里插入图片描述
在这里插入图片描述

2. 指数分布

在这里插入图片描述
在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。

(1)指数分布的概率密度函数
在这里插入图片描述
(2)指数分布的分布函数
在这里插入图片描述
E(X)=1/λ D(X)=1/λ²

3. 正态分布
若随机变量X服从一个数学期望为μ、方差为σ^2的
正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

正态分布具有两个参数μ和σ^2 的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。

μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。

σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。

正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68.268949%。
P{|X-μ|<σ}=2Φ(1)-1=0.6826
横轴区间(μ-2.58σ,μ+2.58σ)内的面积为95.449974%。
P{|X-μ|<2σ}=2Φ(2)-1=0.9544
横轴区间(μ-3σ,μ+3σ)内的面积为99.730020%。
P{|X-μ|<3σ}=2Φ(3)-1=0.9974

由于“小概率事件”和假设检验的基本思想 “小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。由此可见X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。

在这里插入图片描述
4. 标准正态分布
当μ = 0,σ = 1时的正态分布是标准正态分布。

 

注意点:

1. 二项分布和超几何分布的区别与联系

超几何分布和二项分布的相同点为:随机变量均是取连续非负整数值的离散型分布列.
超几何分布和二项分布最明显的区别有两点:
①超几何分布是不放回抽取,二项分布是放回抽取,也就是说二项分布中每个事件之间是相互独立的,而超几何分布不是;
②超几何分布需要知道总体的容量,也就是总体个数有限;而二项分布不需要知道总体容量,但需要知道“成功率”.

超几何分布和二项分布二者之间也有联系:当总体很大时,超几何分布近似于二项分布,或者说超几何分布的极限就是二项分布。

2. 二项分布与泊松分布的区别与联系
当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。

3. 泊松分布与指数分布的关系
1、分布方面:
泊松分布参数bai是单位时间(或单位面du积)随机事件发生的zhi平均次数。泊松分dao布适用于描述单位时间内的随机事件数。指数分布可以用来表示独立随机事件的时间间隔,如旅客进入机场的时间间隔、中文维基百科新条目出现的时间间隔等。

2、应用方面:
指数分布被广泛使用。在日本工业标准和美国军用标准中,半导体器件的采样方案采用指数分布。此外,还用指数分布描述了大型复杂系统(如计算机)平均故障间隔时间的平均无故障时间分布。

泊松分布适用于描述每单位时间(或空间)的随机事件数。例如,某一时间到达服务设施的人数、电话交换所接到的呼叫数、公共汽车站等候的客人数、机器故障数、自然灾害数、产品缺陷数。在显微镜下分布在单位面积的细菌等。

3、然泊松分布和指数分布都有一个指数,兰姆达。但是这是两个概念。
泊松分布,期望值是朗姆达,意思就是强度。比如一段时间的人流量的强度。
指数分布,期望值的朗姆达的倒数。意思就是失效率。失效率是工作到某时刻尚未失效的产品。

这篇关于概率论 —— 相关分布以及期望方差的求法汇总的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910843

相关文章

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

防止SpringBoot程序崩溃的几种方式汇总

《防止SpringBoot程序崩溃的几种方式汇总》本文总结了8种防止SpringBoot程序崩溃的方法,包括全局异常处理、try-catch、断路器、资源限制、监控、优雅停机、健康检查和数据库连接池配... 目录1. 全局异常处理2. 使用 try-catch 捕获异常3. 使用断路器4. 设置最大内存和线

解决tomcat启动时报Junit相关错误java.lang.ClassNotFoundException: org.junit.Test问题

《解决tomcat启动时报Junit相关错误java.lang.ClassNotFoundException:org.junit.Test问题》:本文主要介绍解决tomcat启动时报Junit相... 目录tomcat启动时报Junit相关错误Java.lang.ClassNotFoundException

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.