C++数据结构——链表(各式链表与案例)

2024-04-17 04:38

本文主要是介绍C++数据结构——链表(各式链表与案例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一:单链表

#include<iostream>
using namespace std;enum error_code{success, underflow, range_error
};struct node{int data;node* next;
};class list{public:list();~list();int length()const; // 获得链表长度 error_code get_element(const int i, int& x)const; // 按序号取元素 node* locate(const int x)const; // 按值查找响应结点 error_code insert(const int i, const int x); // 插入结点 error_code delete_element(const int i); // 删除结点error_code display(); // 显示链表所有元素  node* get_head(); // 读取链表表头指针的函数void create_R(); // 表尾插入法建表void create_H(); // 表头插入法建表 private:int count;node* head;
};list::list(){count = 0;head = new node;head->next = NULL;
}list::~list(){for(int i = 1; i <= count; i++) delete_element(i);
}int list::length()const{node* p = head->next;int n = 0;while(p != NULL){n++;p = p->next;}return n;// 或者直接 return count; 
} error_code list::get_element(const int i, int& x)const{node* p = new node;p = head->next;int j = 1;while(p != NULL && j != i){p = p->next;j++;}if(p == NULL) return range_error;x = p->data;return success;
}node* list::locate(const int x)const{node* p = new node;p = head->next;while(p != NULL){if(p->data == x) return p;elsep = p->next;}return NULL;
}error_code list::insert(const int i, const int x){if(i < 1 || i > count + 1) return range_error;node* p = new node;p = head; // 此时不能指向 head->next, 如果在第一个结点插入,那样会直接在while里死循环 int j = 0;while(j != i - 1 && p != NULL) // 搜索i-1结点 (p != NULL 的必要性??){p = p->next;j++;}node* s = new node;s->data = x;s->next = p->next;p->next = s;count++;return success;
} error_code list::delete_element(const int i){if(i < 1 || i > count) return range_error; node* p = new node;p = head;int j = 0;while(j != i - 1 && p != NULL){ // 搜索i-1结点 p = p->next;j++;}node* u = new node;u = p->next; // 指向待删除结点p->next = u->next; // 绕过待删除结点delete u;count--;return success; 
}error_code list::display(){if(length() == 0) return underflow;node* s = new node;s = head->next;while(s != NULL){cout << s->data << "  ";s = s->next;}cout << endl;return success;
}node* list::get_head(){return head;
}void list::create_R(){int x;cin >> x;node* rear = head; // 设置尾指针while(x != -1) // 设置结束符 {node* s = new node;s->data = x;rear->next = s;rear = s;rear->next = NULL;count++;cin >> x;}
} void list::create_H(){int x;cin >> x;while(x != -1) // 设置结束符{node* s = new node;s->data = x;s->next = head->next;head->next = s;count++;cin >> x;}
}bool ReferenceError(error_code a)
{if(a == underflow){cout << "underflow!!" << endl;return false;}if(a == range_error){cout << "range_error!!" << endl;return false;}return true;
}int main()
{list L;int d;L.create_H(); // 初始化链表 ReferenceError(L.display()); // 展示链表内容 cout << L.length() << endl; // 获得链表长度 ReferenceError(L.get_element(3, d)); // 按照索引获得值 cout << d << endl;ReferenceError(L.delete_element(3)); // 删除结点 ReferenceError(L.insert(1, 0)); // 插入结点 ReferenceError(L.display());return 0;
}

二:单循环链表

将单链表的表尾结点中的后继指针改为指向表头结点,就构成了单循环链表,而且单循环链表可以不带头结点,改为单循环链表后,搜索函数就需要改变,否则会进入死循环。

带头结点的单循环链表:

#include<iostream>
using namespace std;enum error_code{success, underflow, range_error
};struct node{int data;node* next;
};class list{public:list();~list();int length()const;error_code get_element(const int i, int& x)const; node* locate(const int x)const; error_code insert(const int i, const int x); error_code delete_element(const int i);error_code display(); node* get_head();void create_R();void create_H();private:int count;node* head;
};list::list(){count = 0;head = new node;head->next = head;
}list::~list(){for(int i = 1; i <= count; i++) delete_element(i);
}int list::length()const{return count; 
} error_code list::get_element(const int i, int& x)const{if(i < 1) return range_error;node* p = new node;p = head->next;int j = 1;while(j != i){p = p->next;j++;}x = p->data;return success;
}node* list::locate(const int x)const{node* p = new node;p = head->next;while(p != head){if(p->data == x) return p;elsep = p->next;}return NULL;
}error_code list::insert(const int i, const int x){if(i < 1 || i > count + 1) return range_error;node* p = new node;p = head; int j = 0;while(j != i - 1){p = p->next;j++;}node* s = new node;s->data = x;s->next = p->next;p->next = s;count++;return success;
} error_code list::delete_element(const int i){if(i < 1 || i > count) return range_error;if(count == 0) return underflow; node* p = new node;p = head;int j = 0;while(j != i - 1){p = p->next;j++;}node* u = new node;u = p->next;p->next = u->next;delete u;count--;return success; 
}error_code list::display(){if(count == 0) return underflow;node* s = new node;s = head->next;while(s != head){cout << s->data << "  ";s = s->next;}cout << endl;return success;
}node* list::get_head(){return head;
}void list::create_R(){int x;cin >> x;node* rear = head;while(x != -1){node* s = new node;s->data = x;rear->next = s;rear = s;rear->next = head;count++;cin >> x;}
} void list::create_H(){int x;cin >> x;while(x != -1){node* s = new node;s->data = x;s->next = head->next;head->next = s;count++;cin >> x;}
}bool ReferenceError(error_code a)
{if(a == underflow){cout << "underflow!!" << endl;return false;}if(a == range_error){cout << "range_error!!" << endl;return false;}return true;
}int main()
{list L;int d;L.create_R(); // 初始化 ReferenceError(L.display()); // 展示链表 cout << L.length() << endl; // 获得链表长度ReferenceError(L.get_element(10, d)); // 按照索引取值cout << d << endl; ReferenceError(L.insert(1, 0)); // 插入值 ReferenceError(L.delete_element(6)); // 删除值ReferenceError(L.display()); return 0;
}

三:链表案例

  • 案例一:设计算法判断链表L中的元素是否是递增的,若递增,返回true,否则返回false
  • 案例二:复制链表A中的内容到B表
  • 案例三:已知递增有序列表A、B分别表示一个集合,设计算法实现A∩B,要求求解结果以相同方式存储。
#include<iostream>
using namespace std;enum error_code{success, underflow, range_error
};struct node{int data;node* next;
};class list{public:list();~list();int length()const;error_code get_element(const int i, int& x)const; node* locate(const int x)const; error_code insert(const int i, const int x); error_code delete_element(const int i);error_code display(); node* get_head();void create_R();void create_H();private:int count;node* head;
};list::list(){count = 0;head = new node;head->next = NULL;
}list::~list(){for(int i = 1; i <= count; i++) delete_element(i);
}int list::length()const{return count; 
} error_code list::get_element(const int i, int& x)const{node* p = new node;p = head->next;int j = 1;while(p != NULL && j != i){p = p->next;j++;}if(p == NULL) return range_error;x = p->data;return success;
}node* list::locate(const int x)const{node* p = new node;p = head->next;while(p != NULL){if(p->data == x) return p;elsep = p->next;}return NULL;
}error_code list::insert(const int i, const int x){if(i < 1 || i > count + 1) return range_error;node* p = new node;p = head; int j = 0;while(j != i - 1 && p != NULL){p = p->next;j++;}node* s = new node;s->data = x;s->next = p->next;p->next = s;count++;return success;
} error_code list::delete_element(const int i){if(i < 1 || i > count) return range_error; node* p = new node;p = head;int j = 0;while(j != i - 1 && p != NULL){p = p->next;j++;}node* u = new node;u = p->next;p->next = u->next;delete u;count--;return success; 
}error_code list::display(){if(length() == 0) return underflow;node* s = new node;s = head->next;while(s != NULL){cout << s->data << "  ";s = s->next;}cout << endl;return success;
}node* list::get_head(){return head;
}void list::create_R(){int x;cin >> x;node* rear = head;while(x != -1){node* s = new node;s->data = x;rear->next = s;rear = s;rear->next = NULL;count++;cin >> x;}
} void list::create_H(){int x;cin >> x;while(x != -1){node* s = new node;s->data = x;s->next = head->next;head->next = s;count++;cin >> x;}
}bool ReferenceError(error_code a)
{if(a == underflow){cout << "underflow!!" << endl;return false;}if(a == range_error){cout << "range_error!!" << endl;return false;}return true;
}// 判断是否递增
void isAdd()
{cout << "判断递增" << endl;// 初始化题目条件 list L;int d1, d2, i;L.create_R();ReferenceError(L.display());int length = L.length(); // 避免多次计算长度浪费性能 // 开始操作for(i = 1; i < length; i++){ReferenceError(L.get_element(i, d1));ReferenceError(L.get_element(i + 1, d2));if(d1 > d2){cout << "不是递增的!!" << endl;break;	    	}}if(i == length)cout << "是递增的!!" << endl;
}// 复制链表
void copy()
{cout << "复制链表" << endl;// 初始化题目条件 list La, Lb;int ia, ib, d;La.create_R();ReferenceError(La.display());// 开始操作ia = La.length();for(ib = 1; ib <= ia; ib++){ReferenceError(La.get_element(ib, d));ReferenceError(Lb.insert(ib, d));}ReferenceError(Lb.display());
}// 实现 A ∩B 
void intersection()
{cout << "实现交集" << endl;//初始化题目条件list La, Lb, Lc;int ia = 1, ib = 1, ic = 1; int x, y;La.create_R();Lb.create_R();ReferenceError(La.display());ReferenceError(Lb.display());// 开始操作int l1 = La.length();int l2 = Lb.length();while(ia <= l1 && ib <= l2){ReferenceError(La.get_element(ia, x));ReferenceError(Lb.get_element(ib, y));if(x == y){ReferenceError(Lc.insert(ic, x));ic++;ia++;ib++;}if(x > y){ReferenceError(Lc.insert(ic, y));ic++;ib++;}if(x < y){ReferenceError(Lc.insert(ic, x));ic++;ia++;}		}while(ia <= l1){ReferenceError(La.get_element(ia, x));ReferenceError(Lc.insert(ic, x));ic++;ia++;}while(ib <= l2){ReferenceError(Lb.get_element(ib, y));ReferenceError(Lc.insert(ic, y));ic++;ib++;}ReferenceError(Lc.display());
}int main()
{// 判断是否递增isAdd();// 复制链表copy();// 实现 A ∩B intersection();return 0;
}

更多内容大家可以前往我的个人博客浏览:eyes++的个人空间

这篇关于C++数据结构——链表(各式链表与案例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910804

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

Spring Boot 整合 SSE(Server-Sent Events)实战案例(全网最全)

《SpringBoot整合SSE(Server-SentEvents)实战案例(全网最全)》本文通过实战案例讲解SpringBoot整合SSE技术,涵盖实现原理、代码配置、异常处理及前端交互,... 目录Spring Boot 整合 SSE(Server-Sent Events)1、简述SSE与其他技术的对

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基