基于CNN的棉花不同病害叶识别(Python代码,pytorch框架,代码有详细中文注释,准确率在90%以上)

本文主要是介绍基于CNN的棉花不同病害叶识别(Python代码,pytorch框架,代码有详细中文注释,准确率在90%以上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.效果视频(训练过程:基于CNN模型的棉花不同病害叶识别(Python代码,pytorch框架)_哔哩哔哩_bilibili(为减小视频时长,epoch为30,准确率在85%左右,epoch为60后,稳定在90%以上),

GUI识别过程:棉花也病害识别GUI运行界面_哔哩哔哩_bilibili)

CNN模型介绍( CNN模型代码,可以替换为MobileNetV3Small, VGG16,AlexNet,ResNet18,GoogLeNet,很容易):

表 3-1 CNN完整网络参数

网络

名称

层类型

核尺寸/

步长

核数量

激活

函数

CNN

模块

卷积块1

卷积层

3*3/1

16

ReLU

BN层

卷积块2

卷积层

3*3/1

32

ReLU

BN层

池化层1

最大池化层

2/2

卷积块3

卷积层

3*3/1

64

ReLU

BN层

卷积块4

卷积层

3*3/1

128

ReLU

BN层

池化层2

自适应最大池化层

分类器

全连接层1

256

ReLU

全连接层2

128

ReLU

输出层

4

Softmax

代码实现(这里把注释去掉了)

from torch import nn
import warnings
import torch
# ----------------------------inputsize >=28*28-------------------------------------------------------------------------
class CNN(nn.Module):def __init__(self, pretrained=False, in_channel=3, num_classes=4):super(CNN, self).__init__()if pretrained == True:warnings.warn("Pretrained model is not available")self.layer1 = nn.Sequential(nn.Conv2d(in_channel, 16, kernel_size=3),  nn.BatchNorm2d(16),nn.ReLU(inplace=True))self.layer2 = nn.Sequential(nn.Conv2d(16, 32, kernel_size=3),  nn.BatchNorm2d(32),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2))  self.layer3 = nn.Sequential(nn.Conv2d(32, 64, kernel_size=3),nn.BatchNorm2d(64),nn.ReLU(inplace=True))self.layer4 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3), nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.AdaptiveMaxPool2d((4,4)))  self.layer5 = nn.Sequential(nn.Linear(128 * 4 * 4, 1024),nn.ReLU(inplace=True),nn.Linear(1024, 128),nn.ReLU(inplace=True))self.fc = nn.Linear(128, num_classes)def forward(self, x):x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = x.view(x.size(0), -1)x = self.layer5(x)x = self.fc(x)return x

2.数据集介绍

 

 如果想识别的时候呈现中文名称:

文件夹改为中文名字即可

  1. Bacterial Blight(细菌性枯萎病):细菌性枯萎病是由细菌引起的棉花疾病,主要受害部位是棉花的叶子和茎。这种病害可以导致叶片枯萎、变色和腐烂,对棉花产量产生不利影响。

  2. Curl Virus(卷叶病毒):卷叶病毒是一种病毒性病害,影响棉花植株。感染后,棉花叶片会卷曲并显示异常的颜色,这可能导致棉花生长不良和减产。

  3. Fusarium Wilt(枯萎病):枯萎病是由一种真菌引起的棉花疾病。这种病害会导致棉花植株的叶子和茎部出现枯萎、变色和凋落的症状。枯萎病对棉花的生长和产量也造成了负面影响。

  4. Healthy(健康):"Healthy" 表示没有任何上述病害或问题,棉花植株处于正常健康状态。

1.Bacterial Blight(细菌性枯萎病)文件夹(448张照片) 

2. Curl Virus(卷叶病毒)文件夹(417张照片)

3. Fusarium Wilt(枯萎病)文件夹(419张照片)

4.健康文件夹(426张照片)

 只对数据集感兴趣额的,可以关注棉花叶病害数据集_cotton insect pests 数据集-CSDN博客

整个文件夹的截图

背景照片是GUI程呈现的背景,可以替换

train.py是训练主程序,调用model.py里面写的CNN模型

model.py就是CNN模型

hf.py是对data文件夹里的原始数据进行分割训练集和测试集,生成的训练集和测试集保存在了piture文件夹(如果运行hf.py,需要重新删除piture文件夹) 

CNN.pth就是train.py训练结束保存的模型参数。

class_indices.join可以被pycharm或者Spyder等Python语言编译器打开,里面是标签和对应的类别名称

对项目感兴趣的额,可以关注最后一行

import threading
import os
import json
import torch
import cv2
from PIL import Image
from torchvision import transforms
import tkinter as tk
from tkinter import filedialog
from model import CNN
from PIL import ImageTk
#代码和数据集压缩包:https://mbd.pub/o/bread/mbd-ZZ6alZ9p

这篇关于基于CNN的棉花不同病害叶识别(Python代码,pytorch框架,代码有详细中文注释,准确率在90%以上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910625

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4