【前后端的那些事】SpringBoot 基于内存的ip访问频率限制切面(RateLimiter)

本文主要是介绍【前后端的那些事】SpringBoot 基于内存的ip访问频率限制切面(RateLimiter),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 什么是限流
  • 2. 常见的限流策略
    • 2.1 漏斗算法
    • 2.2 令牌桶算法
    • 2.3 次数统计
  • 3. 令牌桶代码编写
  • 4. 接口测试
  • 5. 测试结果

1. 什么是限流

限流就是在用户访问次数庞大时,对系统资源的一种保护手段。高峰期,用户可能对某个接口的访问频率急剧升高,后端接口通常需要进行DB操作,接口访问频率升高,DB的IO次数就显著增高,从而极大的影响整个系统的性能。如果不对用户访问频率进行限制,高频的访问容易打跨整个服务

2. 常见的限流策略

2.1 漏斗算法

我们想象一个漏斗,大口用于接收客户端的请求,小口用于流出用户的请求。漏斗能够保证流出请求数量的稳定。

在这里插入图片描述

2.2 令牌桶算法

令牌桶算法,每个请求想要通过,就必须从令牌桶中取出一个令牌。否则无法通过。而令牌会内部会维护每秒钟产生的令牌的数量,使得每秒钟能够通过的请求数量得到控制

在这里插入图片描述

2.3 次数统计

次数统计的方式非常直接,每一次请求都进行计数,并统计时间戳。如果下一次请求携带的时间戳在一定的频率内,进行次数的累加。如果次数达到一定阈值,则拒绝后续请求。直到下一次请求时间戳大于初始时间戳,重置接口次数与时间戳

在这里插入图片描述

3. 令牌桶代码编写

令牌桶算法我们可以使用Google guava包下的封装好的RateLimiter,紧紧抱住大爹大腿

另外,ip频率限制是一个横向逻辑,该功能应该保护所有后端接口,因此我们可以采用Spring AOP增强所有后端接口

另外,我们需要对同一个用户,对同一个接口访问次数进行限流,这意味着我们需要限制的是——(用户,接口)这样的一对元组。用户可以通过ip进行限定,也就是说,后端是同一个ip针对同一个请求的访问进行限流

因此我们需要为每一个这样的(ip,method)使用令牌桶限流,(ip,method)-> RateLimiter。ip + method这一对元组唯一确定一个RateLimiter

我们可以采用Map缓存这样的一一对应的关系

But,HashMap显然不适合,应为HashMap不防并发;另外ConcurrentHashMap也不合适,假如一个用户发出一个请求后就下线了,那么这个key就会长久的存活于内存中,这极大的增加了内存的压力

因此我们采用Google的Cache

Google大爹提供的Cache功能极其强大,读者可以自行阅读下面文档

/*** A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the* following features:** <ul>*   <li>automatic loading of entries into the cache*   <li>least-recently-used eviction when a maximum size is exceeded*   <li>time-based expiration of entries, measured since last access or last write*   <li>keys automatically wrapped in {@code WeakReference}*   <li>values automatically wrapped in {@code WeakReference} or {@code SoftReference}*   <li>notification of evicted (or otherwise removed) entries*   <li>accumulation of cache access statistics* </ul>* /

IpLimiterAspect.java

import com.fgbg.demo.utils.RequestUtils;
import com.google.common.cache.Cache;
import com.google.common.cache.CacheBuilder;
import com.google.common.util.concurrent.RateLimiter;
import lombok.extern.slf4j.Slf4j;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.Signature;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.reflect.MethodSignature;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import org.springframework.web.bind.annotation.RestController;import java.util.concurrent.TimeUnit;/*** 限制每个ip对同一个接口的访问频率*/
@Component
@Aspect
@Slf4j
@RestController
public class IpLimiterAspect {@Autowiredprivate RequestUtils requestUtils;// 每秒生成1个令牌, 同个ip访问同个接口的QPS为1private final double PERMIT_PER_SECOND = 1;// 创建本地缓存private final Cache<String, RateLimiter> limiterCache = CacheBuilder.newBuilder().expireAfterAccess(5, TimeUnit.MINUTES).build();@Around("execution(* com.fgbg.demo.controller..*.*(..))")public Object around(ProceedingJoinPoint proceedingJoinPoint) throws Throwable {// 构造keySignature signature = proceedingJoinPoint.getSignature();MethodSignature methodSignature = (MethodSignature) signature;String methodName = proceedingJoinPoint.getTarget().getClass().getName() + "." + methodSignature.getName();String key = requestUtils.getCurrentIp() + "->" + methodName;// 获取key对应的RateLimiterRateLimiter rateLimiter = limiterCache.get(key, () -> RateLimiter.create(PERMIT_PER_SECOND));if (! rateLimiter.tryAcquire()) {// 如果不能立刻获取令牌, 说明访问速度大于1 次/s, 触发限流log.warn("访问过快, 触发限流");throw new RuntimeException("访问过快, 触发限流");}log.info("接口放行...");return proceedingJoinPoint.proceed();}
}

RequestUtils.java

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;import javax.servlet.http.HttpServletRequest;@Component
public class RequestUtils {@Autowiredprivate HttpServletRequest httpServletRequest;public String getCurrentIp() {return httpServletRequest.getHeader("X-Real-IP");}
}

4. 接口测试

接口测试这块就比较随意了,笔者这里采用apifox进行接口测试。因为AOP逻辑是增强所有接口,因此这里选择了项目曾经暴露出的一个查询接口。点击运行,即可开始测试
在这里插入图片描述

5. 测试结果

在这里插入图片描述
2.6s,分别在0,1,2s开始时,允许接口访问。10个请求中通过3个,失败7个,QPS = 1,限流成功

在这里插入图片描述
测试量达到40,QPS维持1,说明代码逻辑基本没有问题,Google yyds

这篇关于【前后端的那些事】SpringBoot 基于内存的ip访问频率限制切面(RateLimiter)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910318

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏