【Redis 神秘大陆】001 背景基础理论

2024-04-16 15:28

本文主要是介绍【Redis 神秘大陆】001 背景基础理论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景&基础理论

1.1 什么是缓存

缓存:存储在计算机上的一个原始数据复制集,以便于访问——维基百科

1.2 为什么用缓存

  • 提升用户体验: 【即效率、效益和基本主观满意度】CAST

  • 使用者的状态、系统性能及环境,不同的人对于同样的软件可能有不同的主观感受,而且不同的人对于软件性能关心的视角也不同。

  • 提升系统的性能: 缓存离用户最近,利用缓存可以最小化系统的工作量,能够降低系统的链路

  • 响应时间: 指系统对用户请求做出响应的时间,与人对软件性能的主观感受是非常一致的,它完整地记录了整个系统处理请求的时间,

  • 响应时间= 呈现时间(取决于页面)+系统响应时间【网络传输+应用延迟时间】

  • 延迟时间: 网络传输+应用延迟

  • 吞吐量: 系统在单位时间内处理请求的数量

  • 无并发的系统,吞吐量与响应时间成反比

  • 并发用户数: 并发用户数能够笼统的概括系统性能指标

  • 资源利用率: 资源利用率能够反馈资源的占用情况

1.3 缓存的分类

软件位置划分

客户端缓存
  • 页面缓存: 页面自身元素缓存【之前渲染的页面保存为文件 localStorage 存储】+服务端对静态页面进行缓存 【CDN】

  • 浏览器缓存:

  • 通过请求头: e-tag标记文件 id ,if-modified-sincence 标识更新时间, http 协议,通过发送下载时间给服务端,服务端如果发现没有变更则返回 304-not modified ,客户端收到后可以直接使用缓存文件

  • Cache-control 和 Expires 一致,Cache-Control 选择更多。 cache-control

  • Cache-control|Expires > last-modified/etag

  • APP 缓存: 内存缓存、数据库缓存,文件缓存,用于 均衡网速、流量

服务端缓存
  • 数据库缓存:

  • MySQL 的查询缓存,通过下面命令进行判断是否合理,核心考察缓存命中率

SHOW VARIABLES LIKE '%query_cache%';have_query_cache	YES
query_cache_limit	1048576
query_cache_min_res_unit	1024
query_cache_size	3145728
query_cache_type	OFF
query_cache_wlock_invalidate	OFF
  • Innodb 的缓存性能: innodb_buffer_pool_size,可以通过
SHOW VARIABLES LIKE 'innodb_buffer_pool_size%';
innodb_buffer_pool_size	51539607552  48G
  • (Innodb_buffer_pool_read_requestsInnodb_buffer_pool_reads)/Innodb_buffer_pool_read_requests*1 00%计算缓存命中率,并根据命中率来调整innodb_buffer_pool_size 参数大小进行优化。

  • 平台缓存: Ehcache、GuaCache [JVM]

  • 应用缓存: Redis 【新浪微博】、memCache 等

img

网络中的缓存
  • 代理缓存: 较流行的是Squid,它支持建立复杂的缓存层级 结构,拥有详细的日志、高性能缓存以及用户认证支持
  • 边缘缓存: 例如 Nginx、CDN

正向代理主要处理客户端请求,反向代理主要处理服务器端响应

  • 正向代理:指客户端通过代理服务器请求目标服务器的行为,即代理服务器代表客户端去请求目标服务器。客户端和代理服务器之间通过协议进行通讯。
  • 反向代理:指目标服务器通过代理服务器来响应客户端请求的行为。客户端直接请求代理服务器,然后由代理服务器去选择目标服务器来进行响应。代理服务器和目标服务器之间采用内部协议通讯。

宿主层次划分

类型描述
本地缓存/进程内缓存[L1 L2 L3] JVM jVM存储在应用服务器本地的缓存模式,通常位于同一个JVM内。 本地缓存也称为进程内缓存,直接访问进程所属内存,无需进程间通信,速度最快。 可分为堆内缓存和堆外缓存。堆内缓存会对垃圾回收产生影响,而堆外缓存则会增加序列化和反序列化的开销。
进程间缓存当进程内缓存较大时,重启后需要重新加载缓存,导致系统启动缓慢。可通过在本机单独启动一个进程来专门存放缓存,并通过Domain Socket进行通信。
远程缓存需要跨服务器访问的缓存,数据存放于单独的缓存服务器上。 典型的远程缓存包括Memcached和Redis等。
二级缓存是本地缓存和远程缓存的结合,用于互联网系统。对于易变的数据,散列到分布式部署的远程缓存,减少数据库层访问以提升性能。对于不易改变但访问量大的数据,则进一步放置到本地缓存中,以获得更高的访问性能。

img

  • 大型网站的架构示意图

1.4 基础理论

CAP 理论

  • C:一致性被称为原子对象,任何的读写都应该看起来是“原子”的, 或串行的。写后面的读一定能读到前面写的内容。所有的读写请求都好像被 全局排序。

  • A:对任何非失败节点都应该在有限时间内给出请求的回应。(请求的 可终止性)

  • P:允许节点之间丢失任意多的消息,当网络分区发生时,节点之间的 消息可能会完全丢失。

  • 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否有同样的值。(等同于所有节点访问同一份最新的数据副本)

  • 可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客 户端的读写请求。(对数据更新具备高可用性)

  • 分区容忍性(P):以实际效果而言,分区相当于对通信的时限要求。 系统如果不能在一定时限内达成数据一致性,就意味着发生了分区的情况, 必须就当前操作在C和A之间做出选择。

  • 当网络发生分区时,由于通信路线中断,不可能同时满足一致性和可用性。

  • 一致性需要每个请求返迴之前保证所有分布式节点都达成一致,这与分区情况下不同节点暂时失联是矛盾的。

  • 但是由于网络是不可靠的,分区故障是无法避免的。那么在分区期间,系统要么选择延迟请求得到一致应答(C优先),要么返回可用但可能不一致的快速应答(A优先)。

  • 所以在分布式系统,我们只能做到优先满足CAP中的任何两项,而第三项必须作出让步。

todo : 待确认

模型一致性(Consistency)可用性(Availability)分区容忍性(Partition Tolerance)不能满足的原因
RedisRedis集群在节点选举期间可能出现部分不可用,牺牲了可用性。
ZooKeeperZooKeeper集群在Leader选举期间可能出现部分不可用,牺牲了可用性。

BASE 理论

  • BASE 分别是基本可用性(Basically Available)、柔性事务(Soft State)和最终一致性(Eventually Consistent)的缩写

例如 RocketMQ 的事物消息

JSR 规范

📎JSR107FinalSpecification.pdf

Map<String,<Map<String,Object>>> = Cache 用户信息缓存

<Map<String,Object> = > Entry

Spring-Data-Cache

  1. 基础概念:介绍了核心接口,包括CachingProvider、CacheManager、Cache、Entry和ExpiryPolicy,以及它们的职责和关系。

  2. CacheProvider 创建 CacheManager

  3. CacheManager 管理 Cache

  4. Cache 类似 Map 的数据结构并且存储 Key 为索引的值

  5. Entry: 是存储在 Cache 中的 Key-Value

  6. ExpiryPolicy : 缓存过期策略

  7. 一致性模型:讨论了缓存操作的一致性行为,包括默认一致性模型和可能的其他一致性模型。

  8. 缓存拓扑:描述了缓存条目可能存储的位置,包括本地和分布式环境。

  9. 执行上下文:解释了EntryProcessors、CacheEntryListeners、CacheLoaders、CacheWriters和ExpiryPolicys在缓存操作中的执行环境。

  10. 再入性:讨论了在这些接口的实现中可能限制的再入性。

  11. 简单示例:提供了一个创建和使用缓存的基本示例。

  12. CacheManagers:详细介绍了CacheManager的职责,包括如何获取、配置、创建、关闭和销毁缓存。

  13. 缓存:描述了Cache接口及其方法,以及如何使用它来执行缓存操作。

  14. 缓存注释介绍了一组用于简化缓存交互的注释,如**@CacheDefaults****、@CacheResult@CachePut@CacheRemove和****@CacheRemoveAll****。**

  15. 管理:讨论了如何启用和禁用缓存的管理功能和统计信息。

  16. 可移植性建议:提供了一系列建议,以确保应用程序在使用Java Caching API的不同实现之间具有良好的可移植性。

img

客户端层:使用者直接通过该层与数据进行交互。

缓存提供层:主要对缓存管理层的生命周期进行维护,负责缓存管理 层的创建、保存、获取以及销毁。

缓存管理层:主要对缓存客户端的生命周期进行维护,负责缓存客户 端的创建、保存、获取以及销毁。

缓存存储层:负责数据以什么样的形式进行存储。

基本存储层:是以普通的ConcurrentHashMap为存储核心,数据不淘 汰。

LRU存储层:是以最近最少用为原则进行的数据存储和缓存淘汰机制。

Weak存储层:是以弱引用为原则的数据存储和缓存淘汰机制。

1.5 通用逻辑

imgimg

如果觉得内容对你有帮助的话,还请点个免费的 Star,这是对我最大的鼓励,感谢各位一起同行,共勉!传送门:GitHub | Gitee

这篇关于【Redis 神秘大陆】001 背景基础理论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/909177

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

Redis Pipeline(管道) 详解

《RedisPipeline(管道)详解》Pipeline管道是Redis提供的一种批量执行命令的机制,通过将多个命令一次性发送到服务器并统一接收响应,减少网络往返次数(RTT),显著提升执行效率... 目录Redis Pipeline 详解1. Pipeline 的核心概念2. 工作原理与性能提升3. 核

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

SpringBoot中配置Redis连接池的完整指南

《SpringBoot中配置Redis连接池的完整指南》这篇文章主要为大家详细介绍了SpringBoot中配置Redis连接池的完整指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以... 目录一、添加依赖二、配置 Redis 连接池三、测试 Redis 操作四、完整示例代码(一)pom.

Redis在windows环境下如何启动

《Redis在windows环境下如何启动》:本文主要介绍Redis在windows环境下如何启动的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis在Windows环境下启动1.在redis的安装目录下2.输入·redis-server.exe

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.