政安晨:【深度学习神经网络基础】(八)—— 神经网络评估回归与模拟退火训练

本文主要是介绍政安晨:【深度学习神经网络基础】(八)—— 神经网络评估回归与模拟退火训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简述

评估回归

模拟退火训练


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏政安晨的机器学习笔记

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

简述

深度学习神经网络的评估回归是一种用于评估网络性能的方法。

在回归问题中,神经网络被用于将输入数据映射到连续的输出。

评估回归的目标是通过计算网络的输出和真实值之间的差异来评估网络的准确性。常见的评估指标包括均方误差(MSE)和平均绝对误差(MAE)。这些指标可以用来度量预测值与真实值之间的接近程度,从而评估网络的性能。

模拟退火是一种用于训练深度学习神经网络的优化算法。

该算法通过模拟物质在冷却过程中的结构优化过程来寻找全局最优解。在模拟退火算法中,网络的权重和偏差被视为系统的状态变量,优化过程被视为一个寻找最低能量状态的问题。通过迭代地调整网络的权重和偏差,并根据能量函数(即损失函数)计算网络的性能,模拟退火算法可以逐渐优化网络的参数,从而提高网络的性能。

在模拟退火训练中,初始温度被设置为一个比较高的值,然后通过不断迭代降低温度,从而控制系统的状态在搜索空间中移动的程度。每次迭代中,根据能量差和当前温度计算一个概率,用于决定是否接受新的状态。这样,模拟退火算法可以在搜索空间中探索较广的范围,并有可能避免陷入局部最优解。

通过评估回归和模拟退火训练,可以有效地评估和优化深度学习神经网络的性能,从而提高网络的准确性和泛化能力。


评估回归

均方差(MSE)计算是评估回归机器学习的最常用方法。大多数神经网络、支持向量机和其他模型的示例都采用了MSE,如下公式所示:

在上面公式中,y[i]是理想输出,y[i]^是实际输出。均方差的本质是各个差的平方的均值。因为对单个差求平方,所以差的正负性不影响MSE的值。

你可以用MSE评估分类问题。

为了用MSE评估分类输出,每个分类的概率都被简单地看成数字输出。对于正确的类,预期的输出就是1.0,对于其他类,预期的输出则为0。如果第一类是正确的,而其他三类是错误的,则预期结果向量将如下:

[1.0, 0, 0, 0]

这样,你几乎可以将任何回归目标函数用于分类。各种函数,如均方根(Root Mean Square,RMS)和误差平方和(Sum of Squares Error,SSE),都可以用于评估回归。

模拟退火训练

要训练神经网络,必须定义它的任务。目标函数(也称为计分或损失函数)可以生成这些任务。本质上,目标函数会评估神经网络并返回一个数值,表明该神经网络的有用程度。训练会在每次迭代中修改神经网络的权重,从而提高目标函数返回的值。

模拟退火是一种有效的优化技术,已在本系列的前文中提及,我们将回顾模拟退火,展示任意向量优化函数如何改善前馈神经网络的权重。

回顾一下,模拟退火的工作原理是首先将神经网络的权向量赋为随机值,然后将这个向量看成一个位置,程序会评估从该位置开始的所有可能移动。要了解神经网络权重向量如何转换为位置,请考虑只有3个权重的神经网络。在现实世界中,我们用x、y和z坐标来考虑位置。我们可以将任意位置写成有3个分量的向量。如果我们希望只在其中1个维度上移动,那么向量总共可以在6个方向上移动。我们可以选择在x、y或z维度上向前或向后移动。

通过在所有可用的维度上向前或向后移动,模拟退火实现其功能。如果该算法采取了最佳移动,那么将形成简单的爬山算法。爬山只会提高得分,因此,它也被称为贪心算法。为了达到最佳位置,算法有时需要移到较低的位置。因此,模拟退火很多时候有进两步、退一步的表现。

换言之,模拟退火有时会允许移动到具有较差得分的权重配置。接受这种移动的概率开始很高,而后逐渐降低。这种概率称为当前温度,它模拟了实际的冶金退火过程。

下图展示了模拟退火的整个过程。

前馈神经网络可以利用模拟退火来学习鸢尾花数据集。以下程序展示了这种训练的输出:

Iteration #1, Score=0.3937, k=1,kMax=100,t=343.5891,prob=0.9998 Iteration #2, Score=0.3937, k=2,kMax=100,t=295.1336,prob=0.9997 Iteration #3, Score=0.3835, k=3,kMax=100,t=253.5118,prob=0.9989 Iteration #4, Score=0.3835, k=4,kMax=100,t=217.7597,prob=0.9988 Iteration #5, Score=0.3835, k=5,kMax=100,t=187.0496,prob=0.9997 Iteration #6, Score=0.3835, k=6,kMax=100,t=160.6705,prob=0.9997 Iteration #7, Score=0.3835, k=7,kMax=100,t=138.0116,prob=0.9996 ... Iteration #99, Score=0.1031, k=99,kMax=100,t=1.16E-4,prob= 2.8776E-7 Iteration #100, Score=0.1031, k=100,kMax=100,t=9.9999E-5,prob= 2.1443E-70 Final score: 0.1031 [0.22222222222222213, 0.6249999999999999, 0.06779661016949151, 0.04166666666666667] -> Iris-setosa, Ideal: Iris-setosa [0.1666666666666668, 0.41666666666666663, 0.06779661016949151, 0.04166666666666667] -> Iris-setosa, Ideal: Iris-setosa ... [0.6666666666666666, 0.41666666666666663, 0.711864406779661, 0.9166666666666666] -> Iris-virginica, Ideal: Iris-virginica [0.5555555555555555, 0.20833333333333331, 0.6779661016949152, 0.75] -> Iris-virginica, Ideal: Iris-virginica [0.611111111111111, 0.41666666666666663, 0.711864406779661, 0.7916666666666666] -> Iris-virginica, Ideal: Iris-virginica [0.5277777777777778, 0.5833333333333333, 0.7457627118644068, 0.9166666666666666] -> Iris-virginica, Ideal: Iris-virginica [0.44444444444444453, 0.41666666666666663, 0.6949152542372881, 0.7083333333333334] -> Iris-virginica, Ideal: Iris-virginica [1.178018083703488, 16.66575553359515, -0.6101619300462806, -3.9894606091020965, 13.989551673146842, -8.87489712462323, 8.027287801488647, -4.615098285283519, 6.426489182215509, -1.4672962642199618, 4.136699061975335, 4.20036115439746, 0.9052469139543605, -2.8923515248132063, -4.733219252086315, 18.6497884912826, 2.5459600552510895, -5.618872440836617, 4.638827606092005, 0.8887726364890928, 8.730809901357286, -6.4963370793479545, -6.4003385330186795, -11.820235441582424, -3.29494170904095, -1.5320936828139837, 0.1094081633203249, 0.26353076268018827, 3.935780218339343, 0.8881280604852664, -5.048729642423418, 8.288232057956957, -14.686080237582006, 3.058305829324875, -2.4144038920292608, 21.76633883966702, 12.151853576801647, -3.6372061664901416, 6.28253174293219, -4.209863472970308, 0.8614258660906541, -9.382012074551428, -3.346419915864691, -0.6326977049713416, 2.1391118323593203, 0.44832732990560714, 6.853600355726914, 2.8210824313745957, 1.3901883615737192, -5.962068350552335, 0.502596306917136]

最初的随机神经网络,多类对数损失得分很高,即30。随着训练的进行,该值一直下降,直到足够低时训练停止。对于这个例子,一旦错误降至10以下,训练就会停止。

要确定错误的良好停止点,你应该评估神经网络在预期用途下的运行情况。

低于0.5的对数损失通常在可接受的范围内;

但是,神经网络可能无法对所有数据集都达到这个得分。


这篇关于政安晨:【深度学习神经网络基础】(八)—— 神经网络评估回归与模拟退火训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908399

相关文章

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We