政安晨:【深度学习神经网络基础】(八)—— 神经网络评估回归与模拟退火训练

本文主要是介绍政安晨:【深度学习神经网络基础】(八)—— 神经网络评估回归与模拟退火训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简述

评估回归

模拟退火训练


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏政安晨的机器学习笔记

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

简述

深度学习神经网络的评估回归是一种用于评估网络性能的方法。

在回归问题中,神经网络被用于将输入数据映射到连续的输出。

评估回归的目标是通过计算网络的输出和真实值之间的差异来评估网络的准确性。常见的评估指标包括均方误差(MSE)和平均绝对误差(MAE)。这些指标可以用来度量预测值与真实值之间的接近程度,从而评估网络的性能。

模拟退火是一种用于训练深度学习神经网络的优化算法。

该算法通过模拟物质在冷却过程中的结构优化过程来寻找全局最优解。在模拟退火算法中,网络的权重和偏差被视为系统的状态变量,优化过程被视为一个寻找最低能量状态的问题。通过迭代地调整网络的权重和偏差,并根据能量函数(即损失函数)计算网络的性能,模拟退火算法可以逐渐优化网络的参数,从而提高网络的性能。

在模拟退火训练中,初始温度被设置为一个比较高的值,然后通过不断迭代降低温度,从而控制系统的状态在搜索空间中移动的程度。每次迭代中,根据能量差和当前温度计算一个概率,用于决定是否接受新的状态。这样,模拟退火算法可以在搜索空间中探索较广的范围,并有可能避免陷入局部最优解。

通过评估回归和模拟退火训练,可以有效地评估和优化深度学习神经网络的性能,从而提高网络的准确性和泛化能力。


评估回归

均方差(MSE)计算是评估回归机器学习的最常用方法。大多数神经网络、支持向量机和其他模型的示例都采用了MSE,如下公式所示:

在上面公式中,y[i]是理想输出,y[i]^是实际输出。均方差的本质是各个差的平方的均值。因为对单个差求平方,所以差的正负性不影响MSE的值。

你可以用MSE评估分类问题。

为了用MSE评估分类输出,每个分类的概率都被简单地看成数字输出。对于正确的类,预期的输出就是1.0,对于其他类,预期的输出则为0。如果第一类是正确的,而其他三类是错误的,则预期结果向量将如下:

[1.0, 0, 0, 0]

这样,你几乎可以将任何回归目标函数用于分类。各种函数,如均方根(Root Mean Square,RMS)和误差平方和(Sum of Squares Error,SSE),都可以用于评估回归。

模拟退火训练

要训练神经网络,必须定义它的任务。目标函数(也称为计分或损失函数)可以生成这些任务。本质上,目标函数会评估神经网络并返回一个数值,表明该神经网络的有用程度。训练会在每次迭代中修改神经网络的权重,从而提高目标函数返回的值。

模拟退火是一种有效的优化技术,已在本系列的前文中提及,我们将回顾模拟退火,展示任意向量优化函数如何改善前馈神经网络的权重。

回顾一下,模拟退火的工作原理是首先将神经网络的权向量赋为随机值,然后将这个向量看成一个位置,程序会评估从该位置开始的所有可能移动。要了解神经网络权重向量如何转换为位置,请考虑只有3个权重的神经网络。在现实世界中,我们用x、y和z坐标来考虑位置。我们可以将任意位置写成有3个分量的向量。如果我们希望只在其中1个维度上移动,那么向量总共可以在6个方向上移动。我们可以选择在x、y或z维度上向前或向后移动。

通过在所有可用的维度上向前或向后移动,模拟退火实现其功能。如果该算法采取了最佳移动,那么将形成简单的爬山算法。爬山只会提高得分,因此,它也被称为贪心算法。为了达到最佳位置,算法有时需要移到较低的位置。因此,模拟退火很多时候有进两步、退一步的表现。

换言之,模拟退火有时会允许移动到具有较差得分的权重配置。接受这种移动的概率开始很高,而后逐渐降低。这种概率称为当前温度,它模拟了实际的冶金退火过程。

下图展示了模拟退火的整个过程。

前馈神经网络可以利用模拟退火来学习鸢尾花数据集。以下程序展示了这种训练的输出:

Iteration #1, Score=0.3937, k=1,kMax=100,t=343.5891,prob=0.9998 Iteration #2, Score=0.3937, k=2,kMax=100,t=295.1336,prob=0.9997 Iteration #3, Score=0.3835, k=3,kMax=100,t=253.5118,prob=0.9989 Iteration #4, Score=0.3835, k=4,kMax=100,t=217.7597,prob=0.9988 Iteration #5, Score=0.3835, k=5,kMax=100,t=187.0496,prob=0.9997 Iteration #6, Score=0.3835, k=6,kMax=100,t=160.6705,prob=0.9997 Iteration #7, Score=0.3835, k=7,kMax=100,t=138.0116,prob=0.9996 ... Iteration #99, Score=0.1031, k=99,kMax=100,t=1.16E-4,prob= 2.8776E-7 Iteration #100, Score=0.1031, k=100,kMax=100,t=9.9999E-5,prob= 2.1443E-70 Final score: 0.1031 [0.22222222222222213, 0.6249999999999999, 0.06779661016949151, 0.04166666666666667] -> Iris-setosa, Ideal: Iris-setosa [0.1666666666666668, 0.41666666666666663, 0.06779661016949151, 0.04166666666666667] -> Iris-setosa, Ideal: Iris-setosa ... [0.6666666666666666, 0.41666666666666663, 0.711864406779661, 0.9166666666666666] -> Iris-virginica, Ideal: Iris-virginica [0.5555555555555555, 0.20833333333333331, 0.6779661016949152, 0.75] -> Iris-virginica, Ideal: Iris-virginica [0.611111111111111, 0.41666666666666663, 0.711864406779661, 0.7916666666666666] -> Iris-virginica, Ideal: Iris-virginica [0.5277777777777778, 0.5833333333333333, 0.7457627118644068, 0.9166666666666666] -> Iris-virginica, Ideal: Iris-virginica [0.44444444444444453, 0.41666666666666663, 0.6949152542372881, 0.7083333333333334] -> Iris-virginica, Ideal: Iris-virginica [1.178018083703488, 16.66575553359515, -0.6101619300462806, -3.9894606091020965, 13.989551673146842, -8.87489712462323, 8.027287801488647, -4.615098285283519, 6.426489182215509, -1.4672962642199618, 4.136699061975335, 4.20036115439746, 0.9052469139543605, -2.8923515248132063, -4.733219252086315, 18.6497884912826, 2.5459600552510895, -5.618872440836617, 4.638827606092005, 0.8887726364890928, 8.730809901357286, -6.4963370793479545, -6.4003385330186795, -11.820235441582424, -3.29494170904095, -1.5320936828139837, 0.1094081633203249, 0.26353076268018827, 3.935780218339343, 0.8881280604852664, -5.048729642423418, 8.288232057956957, -14.686080237582006, 3.058305829324875, -2.4144038920292608, 21.76633883966702, 12.151853576801647, -3.6372061664901416, 6.28253174293219, -4.209863472970308, 0.8614258660906541, -9.382012074551428, -3.346419915864691, -0.6326977049713416, 2.1391118323593203, 0.44832732990560714, 6.853600355726914, 2.8210824313745957, 1.3901883615737192, -5.962068350552335, 0.502596306917136]

最初的随机神经网络,多类对数损失得分很高,即30。随着训练的进行,该值一直下降,直到足够低时训练停止。对于这个例子,一旦错误降至10以下,训练就会停止。

要确定错误的良好停止点,你应该评估神经网络在预期用途下的运行情况。

低于0.5的对数损失通常在可接受的范围内;

但是,神经网络可能无法对所有数据集都达到这个得分。


这篇关于政安晨:【深度学习神经网络基础】(八)—— 神经网络评估回归与模拟退火训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908399

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3