[SPSS]判别分析的SPSS实现——以根据生化指标对胃病患者进行判别为例

本文主要是介绍[SPSS]判别分析的SPSS实现——以根据生化指标对胃病患者进行判别为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、导入数据并查看数据情况:

1、数据总体状况:

其中Group表示病人胃病类型。

2、更改变量名:把x1,x2,x3,x4改成具有意义的变量名并且修改变量度量类型,如下图所示:

3、变量的描述性统计

操作:分析-描述性

描述性统计结果如下:

可以看到数据的分布没有特别的离异点,也没有缺失值和不合理的分布,从而可以用该数据做接下来的距离判别分析。

4、由于后续做判别分析的时候,Group无法作为分类变量,从而这里引入胃病类型作为分类变量,如下图所示:

二、判别分析

0、判别分析原理:判别分析是多元统计中用于判别样品所属类型的一种统计分析方法,是一种在已知研究对象用某种方法已经分成若干类的情况下,确定新的样品的观测数据属于哪一类的研究方法。

1、距离判别法

(1)原理:根据待判定样本与已知类别样本之间的距离远近做出判断,把待判定样本归类为距离原样本最近的类别。

(2)判别公式(以两总体马氏距离为例):

(3)判别过程和结果:

由于SPSS中的判别分析没有距离判别这一方法,因此距离判别法无法在SPSS中直接实现。我们通过R语言来做。其中Rcode放在另外一个文件,这里只显示回判结果。

可见只有8号样本回判错误。

 

2、贝叶斯判别法

(1)原理:

 

则把X0判给Gl。

(2)判别过程:

按下图选择判别分析:

把胃病类型放入分组变量,四个自变量放入分类自变量中,定义分组变量的范围为1到3,如下所示:

在Statistics选项卡中选择函数系数下面的Fisher’s和未标准化选择判别方法,含义如下所示:

Fisher’s:给出Bayes判别函数的系数。(注意:这个选项不是要给出Fisher判别函数的系数。这个复选框的名字之所以为Fisher’s,是因为按判别函数值最大的一组进行归类这种思想是由Fisher提出来的。这里极易混淆,请注意辨别。)

Unstandardized:给出未标准化的Fisher判别函数(即典型判别函数)的系数(SPSS默认给出标准化的Fisher判别函数系数)。

 

单击分类按钮,定义判别分组参数和选择输出结果。选择输出栏中的个案结果,输出一个判别结果表,包括每个样品的判别分数、后验概率、实际组和预测组编号等。其余的均保留系统默认选项。

 

点击保存选项,指定在数据文件中生成代表判别分组结果和判别得分的新变量,生成的新变量的含义分别为:

预测组成员:存放判别样品所属组别的值;

判别分数:存放Fisher判别得分的值,有几个典型判别函数就有几个判别得分变量;

组成员概率:存放样品属于各组的Bayes后验概率值。

运行后得到结果,下一步分析结果。

(3)判别结果解释:

数据视图下可以直接看到判别结果:

贝叶斯判别函数系数如下所示:

费雪判别函数:

第一组:F1=-79.212+0.164x1+0.753x2+0.778x3+0.073x4

第二组:F2=-46.721+0.013x1+0.595x2+0.317x3+0.012x4

第三组:F3=-49.598+0.130x1+0.637x2+0.100x3-0.059x4

费雪判别准则:

将各样品的自变量值代入上述三个Bayes判别函数,得到三个函数值。比较这三个函数值,哪个函数值比较大就可以判断该样品判入哪一类。结合如下数据视图可以得到结论:

3、费歇尔判别法

典型判别函数系数:

两个Fisher判别函数:

F1=0.453x1+0.596x2+0.662x3+0.299x4

F2=-0.175x1-0.811x2+0.600x3+0.608x4

组重心处的Fisher判别函数值:

判别准则:

两个Fisher函数式计算的是各观测值在各个维度上的坐标,这样就可以通过这两个函数式计算出各样品观测值的具体空间位置。

群组重心函数为各类别重心在空间中的坐标位置。这样,只要在前面计算出各观测值的具体坐标位置后,再计算出它们分别离各重心的距离,就可以得知它们的分类了。

4、结果解释:

变量dis-1存放判别样品所属组别的值,变量dis1-1和dis2-1分别代表将样品各变量值代入第一个和第二个判别函数所得的判别分数,变量dis1-2、dis2-2和dis3-2分别代表样品分别属于第1组、第2组和第3组的Bayes后验概率值。

 

这篇关于[SPSS]判别分析的SPSS实现——以根据生化指标对胃病患者进行判别为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908360

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达