自编译支持CUDA硬解的OPENCV和FFMPEG

2024-04-16 08:36

本文主要是介绍自编译支持CUDA硬解的OPENCV和FFMPEG,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 整体思路

查阅opencv的官方文档,可看到有个cudacodec扩展,用他可方便的进行编解码。唯一麻烦的是需要自行编译opencv。
同时,为了考虑后续方便,顺手编译了FFMPEG,并将其与OPENCV绑定。
在之前的博文“鲲鹏主机+昇腾Atlas 300I Pro+龙蜥8.6 全国产化主机使用NPU推理YoloV5环境安装全过程”中已经干过一次了,类似的来搞一把。

2 准备环境

2.1 安装CMake

同之前的博文,CMake官网下载后安装

./cmake-3.29.0-rc4-linux-aarch64.sh --skip-license --prefix=/usr

2.2 安装nv-codec-headers(可选)

如果不需要FFMPEG,可以无视这步。
注意他对CUDA版本和驱动版本的依赖。所以需要根据本机版本选择合适的分支。
官网传送门

以笔者本机为例,可见驱动版本为510.39.01,CUDA版本为11.6:

$ nvidia-smi 
Mon Apr 15 01:30:12 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.39.01    Driver Version: 510.39.01    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            On   | 00000000:01:00.0 Off |                    0 |
| N/A   54C    P0    28W /  70W |    303MiB / 15360MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A   1492699      C   /usr/local/bin/ollama             301MiB |
+-----------------------------------------------------------------------------+

那么选择11.1版本是合适的。同时Video Codec SDK的版本为11.1.5。

在这里插入图片描述
安装比较简单,常规的make && make install 即可。

2.3 安装Nvidia Codec SDK

官网传送门在此

注意他对CUDA版本和驱动版本的依赖,以及nv-codec-headers 对他版本的依赖。因此不能无脑下最新的,需要由此寻找合适的历史版本。
下载完的压缩包中的Read_Me.pdf中有详细的版本要求介绍,也可以根据nv-codec-headers里要求的版本型号进行处理。(应当是一致的)

在这里插入图片描述
解压后,将Interface目录下的头文件,拷贝到你的CUDA安装目录即可,默认路径为/usr/local/cuda/include。千万不要去理那些动态库,那个是配套他的测试DEMO编译用的,可以不用管。

2.4 签出opencv和opencv-contrib

统一使用最近的4.9.0的tag

export GIT_SSL_NO_VERIFY=true
git clone https://github.com/opencv/opencv.git
cd opencv
git checkout 4.9.0
cd ..
git clone https://github.com/opencv/opencv_contrib.git
git checkout 4.9.0
cd ..

3 编译安装

3.1 FFMPEG

可以直接用Video Codec SDK里面配套的FFMPEG 4.4,避免不必要的麻烦

cd Video_Codec_SDK_11.1.5/Samples/External/FFmpeg/src
unzip ffmpeg-4.4.zip
export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:${PKG_CONFIG_PATH}
./configure --enable-shared --enable-pic --enable-cuda --enable-cuvid --enable-nvenc --enable-nvdec --enable-nonfree --enable-libnpp --extra-cflags=-I/usr/local/cuda/include/ --extra-ldflags=-L/usr/local/cuda/lib64/
make && make install

测试转码,如果没啥报错且文件可用,就表示OK了。

ffmpeg -c:v h264_cuvid -i old.mp4 -c:v h264_nvenc new.mp4

3.2 编译OPENCV

在编译之前,需要先查阅Nvidia官网获得你的cuda_arch_bin版本。以笔者本机为例。Tesla T4的数值为7.5
在这里插入图片描述

cd opencv
mkdir build
cd build
cmake -D WITH_FFMPEG=ON \
-D FFMPEG_INCLUDE_DIRS=/usr/local/include \
-D FFMPEG_LIBRARIES="/usr/local/lib/libavcodec.so;/usr/local/lib/libavformat.so;/usr/local/lib/libavutil.so;/usr/local/lib/libswscale.so;/usr/local/lib/libswresample.so" \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
-D WITH_CUDA=ON -D WITH_CUDACODEC=ON \
-D CUDA_ARCH_BIN=7.5 \
-D BUILD_opencv_python3=yes -D BUILD_opencv_python2=no \
-D PYTHON3_EXECUTABLE=/root/miniconda3/bin/python3.11 \
-D PYTHON3_INCLUDE_DIR=/root/miniconda3/include/python3.11/ \
-D PYTHON3_LIBRARY=/root/miniconda3/lib/libpython3.11.so \
-D PYTHON3_NUMPY_INCLUDE_DIRS=/root/miniconda3/lib/python3.11/site-packages/numpy/core/include/ -D PYTHON3_PACKAGES_PATH=/root/miniconda3/lib/python3.11/site-packages \
-D PYTHON3_DEFAULT_EXECUTABLE=/root/miniconda3/bin/python3.11 \
..
make 
make install

如果需要图形化交互,还需要准备一些系统库

yum install gtk2-devel 

4 代码示例

import cv2if __name__ == '__main__':rtsp_url = 'rtsp://admin:123456@192.168.1.100/'decoder = cv2.cudacodec.createVideoReader(rtsp_url)#不设置的化默认是BGRA,为了方便后续处理,指定为BGRdecoder.set(cv2.cudacodec.COLOR_FORMAT_BGR)count = 0while True:ret,gpu_frame = decoder.nextFrame()if ret :frame = gpu_frame.download()if count == 0 :cv2.imwrite('test_img.bmp', frame)frame_queue.append(np.array(frame[:, :, ::-1]))count += 1

这篇关于自编译支持CUDA硬解的OPENCV和FFMPEG的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908298

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

华为鸿蒙HarmonyOS 5.1官宣7月开启升级! 首批支持名单公布

《华为鸿蒙HarmonyOS5.1官宣7月开启升级!首批支持名单公布》在刚刚结束的华为Pura80系列及全场景新品发布会上,除了众多新品的发布,还有一个消息也点燃了所有鸿蒙用户的期待,那就是Ha... 在今日的华为 Pura 80 系列及全场景新品发布会上,华为宣布鸿蒙 HarmonyOS 5.1 将于 7

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函