从51到ARM裸机开发实验(009)LPC2138 中断实验

2024-04-16 05:52

本文主要是介绍从51到ARM裸机开发实验(009)LPC2138 中断实验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、场景设计

        中断的概念在《从51到ARM裸机开发实验(007) AT89C51 中断实验》中已经介绍过,LPC2138的Keil工程创建在《从51到ARM裸机开发实验(005)LPC2138 GPIO实验》中已经介绍过。本次使用LPC2138来实现一个这样的场景:四个LED依次亮灭,时间间隔最小0.1秒,最大1秒,要求精确延时。使用两个按键分别控制间隔时间的增减,每按一次增或减0.1秒。精确延时用定时器中断实现,按键响应使用外部中断实现。(Protues仿真的时间和现实时间差距较大,可以注意Protues左下方的仿真时间或者接示波器观察曲线变化时间间隔)

二、LPC2138时钟系统

        从芯片手册可以看到,PCLK时钟(记住这个时钟,它是定时器发挥作用的前置条件)是由CCLK时钟经过分频而来,分频多少由寄存器VPBDIV决定。PCLK可以等CCLK或1/2CCLK或1/4CCLK。那么CCLK又是怎么来的呢?它是晶振或外部时钟源经PLL锁相环配置而来。

        关于寄存器更详细的解释见文末附件中的芯片数据手册。
本实验中的采用的晶振频率为10MHz,将系统配置为 Fosc = 10MHz , CCLK= 60MHz 。根据芯片手册的描述计算如下:
M=cclk/Fosc = 60MHz/10MHz = 6 。因此, M-1 = 5 写入 PLLCFG4:0 。
P 值可由 P=Fcco/(cclk*2) 得出, Fcco 必须在 156MHz~320MHz 内。假设 Fcco 取最低频率 156MHz ,则P=156MHz/(2*60MHz) = 1.3 。 Fcco 取最高频率可得出 P=2.67 。因此,同时满足 Fcco 最低和最高频率要求的 P 值只能为 2 。所以, PLLCFG=6:5=1 。

接下来配置VPBDIV,本实验中将PCLK配置为CCLK的1/4,即15MHz

三、LPC2138中断系统

        本实验中使用EINT0和EINT1两个中断。

EINT0使用P0.16 配置PINSEL1寄存器1:0位为01
EINT0使用P0.14 配置PINSEL0寄存器29:28位为10

        通过以下两个寄存器配置中断的触发方式:

重点内容:LPC2138不支持中断嵌套。LPC2138为ARM7TDMI内核。是一种ARM处理器架构,具体来说是ARMv4T微架构。在这种处理器中,如果当前处于一个高优先级中断处理程序中,而此时又发生了一个同级别或更低优先级的中断,那么处理器将不会立即进入这个新的中断处理程序,即不支持中断嵌套。这意味着如果一个中断服务程序(ISR)正在执行,并且在该ISR完成之前又发生了一个中断,这第二个中断将被忽略,直至当前的ISR执行完毕。
问题解决方法:① 优化中断处理程序:确保每个中断处理程序尽可能短小精悍,以减少中断处理时间,从而减少对中断嵌套的需求。② 使用轮询方式:如果确实需要在一个中断处理程序执行期间处理另一个中断,可以在ISR中设置一个标志,然后在ISR返回前将控制权交还给处理器,然后在主循环中或者一个低优先级中断中处理这个标志。③ 优先级重新配置:在系统设计中,可以为某些中断设置高的优先级,以确保在处理低优先级中断时不会被高优先级中断打断。④ 使用专用的嵌套向量中断控制器(NVIC):如果硬件和ARM核支持中断嵌套,可以配置NVIC来允许中断嵌套。
在实际应用中,通常会根据实际需求和系统资源,选择最合适的解决方案。如果系统对中断响应有严格的实时要求,且对中断处理时间有严格控制,那么可能需要重新评估系统设计,避免不必要的中断嵌套,或采取措施减少每个中断的处理时间。

LPC2138的中断实现方式:

①、通过VICVectAddrX指定某中断(此时还不知道是哪个中断)发生时的执行函数。

②、通过VICVectCntlX控制寄存器,启用编号为X的中断,并将某VIC通道的中断(指定哪个VIC通道号就是哪个中断)和X中断进行关联。

③、通过VICIntEnable配置启用某中断(VICIntEnable中的位和X存在对应关系)。

四、仿真电路

        注意仿真时间线和现实时间并不一致,比如现实中可能过去三五秒了,仿真时间才过去1秒。仿真时间线注意仿真软件左下角即可。比如本实验中最长延时LED 1秒切换一次,是指Protues的仿真时间线过去1秒才会切换,与现实时间无关。

五、程序设计

1、驱动程序

interrupt.h

#ifndef _INTERRUPT_H_
#define _INTERRUPT_H_
#include "lpc2138.h"void set_interrupt_callback(int interrupt_num, void* isr_callback);
void init_timer0_isr();
void init_external_isr();
#endif

lpc2138.h 里面主要是寄存器到内存地址的映射配置,也可以不使用此文件,自己根据芯片手册配置寄存器。 

interrupt.c

#include "interrupt.h"
#include "delay.h"void (*callback0)(); // 声明一个指向同样参数、返回值的函数指针类型
void (*callback1)(); // 声明一个指向同样参数、返回值的函数指针类型
void (*callback2)(); // 声明一个指向同样参数、返回值的函数指针类型//设置中断回调函数
void set_interrupt_callback(int interrupt_num, void* isr_callback){if(interrupt_num == 0){callback0 = isr_callback;}else if(interrupt_num == 1){callback1 = isr_callback;}else if(interrupt_num == 2){callback2 = isr_callback;}
}//定时器0中断事件处理
void timer0_isr(void) __irq {//清除中断T0IR = (1<<0);//中断应答VICVectAddr = 0;callback2();
}//cclk = 60MHz
void initPLL() {// 设置 PLL0CFG 寄存器,选择合适的 M 和 P 值PLLCFG |= ((1 << 5) |(1 << 2) | (1 << 0));// 启动 PLLPLLCON |= 0x01;// 等待 PLL 锁定while (!(PLLSTAT & (1 << 10)));// 选择 PLL 为系统时钟源PLLCON |= (1 << 1);PLLFEED = 0xAA;PLLFEED = 0x55;// 等待 PLL 切换完成while (!(PLLSTAT & (1 << 9)));
}//pclk = 15MHz
void initVPBdivider() {// 设置 VPBDIV 寄存器,选择 VPB 时钟分频比VPBDIV &= ~(0x03);
}//定时器中断初始化
void init_timer0_isr(){initPLL();initVPBdivider();// 定时器模式:每上升一次PCLK边T0CTCR = 0x00;// 预刻度寄存器:15 MHz PCLK, 15000-1得到毫秒T0PR = 14999;// 匹配寄存器:计时100毫秒即0.1秒T0MR0 = 100;// 每经过T0PR+1个PCLK周期,T0TC值增加1T0TC = 0;// 在MR0上中断和复位(T0TC值 = T0MR0值时触发中断和复位)T0MCR = (1<<0) | (1<<1);// 定时器0 ISR地址VICVectAddr3 = (unsigned long)timer0_isr;// 启用定时器0中断,使用槽位4VICVectCntl3 = (1<<5) | 4;// 在VIC中使能定时器0中断VICIntEnable = (1<<4);// 启动计时器0T0TCR = 0x01;
}// 定义外部中断处理函数0
void external_interrupt_handler0(void) __irq {delayms(10);EXTINT = 1 << 0; // 清除外部中断0的中断标志位VICVectAddr = 0;callback0();
}// 定义外部中断处理函数1
void external_interrupt_handler1(void) __irq {delayms(10);EXTINT = 1 << 1; // 清除外部中断1的中断标志位VICVectAddr = 0;callback1();
}//按键中断初始化
void init_external_isr(){// 配置外部中断引脚// 配置P0.14为ENIT1PINSEL0 |= (1 << 29);		//第29位配置为1PINSEL0 &= ~(0x01<<28); //第28位配置为0// 配置P0.16为ENIT0PINSEL1 |= (1 << 0);		//第0位配置为1PINSEL1 &= ~(0x01<<1);  //第1位配置为0IODIR0 &= ~(1<<16);// 配置外部中断触发方式EXTMODE |= (1 << 0) | (1 << 1); // 设置外部中断0和1为边沿触发模式EXTPOLAR |= (1 << 0) | (1 << 1); // 设置外部中断0和1为上升沿触发// 启用外部中断中断VICVectAddr0 = (unsigned)external_interrupt_handler0; // 设置中断处理函数0VICVectCntl0 |= (1 << 5) | 0x0E; 											// 设置为外部中断0并启用,EINT0中断编号为14VICIntEnable |= (1 << 14); 														// 启用外部中断0VICVectAddr1 = (unsigned)external_interrupt_handler1; // 设置中断处理函数1VICVectCntl1 |= (1 << 5) | 0x0F; 											// 设置为外部中断1并启用,EINT1中断编号为15VICIntEnable |= (1 << 15); 														// 启用外部中断1
}

led.h

#ifndef _LED_H_
#define _LED_H_#define PINSEL0 (*(volatile unsigned long *)0xE002C000)#define IO0PIN (*(volatile unsigned long *)0xE0028000)#define IO0DIR  (*(volatile unsigned long *)0xE0028008)void led_init();void led_on(unsigned char site);void led_off(unsigned char site);char get_led_status(unsigned char site);void led_operate(unsigned char site,unsigned char on_off);
#endif

led.c

#include "led.h"void led_init(){PINSEL0 = PINSEL0 & 0xffffff00;IO0DIR = IO0DIR | 0x0f;
}void led_on(unsigned char site){led_init();switch(site){case 0: IO0PIN &= ~(0x01);break;case 1:IO0PIN &= ~(0x01<<1);break;case 2: IO0PIN &= ~(0x01<<2);break;case 3: IO0PIN &= ~(0x01<<3);break;default:break;}
}void led_off(unsigned char site){led_init();switch(site){case 0: IO0PIN |= (0x01); 	 break;case 1:IO0PIN |= (0x01<<1); break;case 2: IO0PIN |= (0x01<<2); break;case 3: IO0PIN |= (0x01<<3); break;default:break;}
}char get_led_status(unsigned char site){switch(site){case 0: return (IO0PIN >> 0) & (0x01);case 1:return (IO0PIN >> 1) & (0x01);case 2: return (IO0PIN >> 2) & (0x01);case 3: return (IO0PIN >> 3) & (0x01);default:return -1;}
}
//on_off 0:on 1:off
void led_operate(unsigned char site,unsigned char on_off){if(on_off == 0){led_on(site);}else if(on_off == 1){led_off(site);}
}

delay.h

#ifndef _DELAY_H_
#define _DELAY_H_void delayms(unsigned int xms);
#endif

delay.c

#include "delay.h"void delayms(unsigned int xms){unsigned int i,j;for(i=xms;i>0;i--){for(j=2500;j>0;j--);}
}

2、应用程序

application.h

#ifndef _APPLICATION_H_
#define _APPLICATION_H_void timer0_callback();void external0_callback();void external1_callback();
#endif

application.c

#include "application.h"
#include "interrupt.h"#define uchar unsigned char
#define uint unsigned int
#define MAX_CYCLE 10
#define MIN_CYCLE 1uchar num = 0;
uchar time_cycle = 1;int main(void){led_operate(0,0);led_operate(1,1);led_operate(2,1);led_operate(3,1);init_timer0_isr();init_external_isr();set_interrupt_callback(0,external0_callback);set_interrupt_callback(1,external1_callback);set_interrupt_callback(2,timer0_callback);while(1);
}//外部中断0回调函数
void external0_callback(){if(time_cycle > MIN_CYCLE){time_cycle = time_cycle - 1;}
}//外部中断1回调函数
void external1_callback(){if(time_cycle < MAX_CYCLE){time_cycle = time_cycle + 1;}
}//定时器0中断回调函数
void timer0_callback(){num++;if(num>=time_cycle){num=0;if(get_led_status(0) == 0){led_operate(0,1);led_operate(1,0);}else if(get_led_status(1) == 0){led_operate(1,1);led_operate(2,0);}else if(get_led_status(2) == 0){led_operate(2,1);led_operate(3,0);}else if(get_led_status(3) == 0){led_operate(3,1);led_operate(0,0);}}
}

六、资料下载

源码&仿真电路&芯片手册下载地址:https://download.csdn.net/download/qq_54140018/89142182

 

这篇关于从51到ARM裸机开发实验(009)LPC2138 中断实验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907946

相关文章

一文教你如何解决Python开发总是import出错的问题

《一文教你如何解决Python开发总是import出错的问题》经常朋友碰到Python开发的过程中import包报错的问题,所以本文将和大家介绍一下可编辑安装(EditableInstall)模式,可... 目录摘要1. 可编辑安装(Editable Install)模式到底在解决什么问题?2. 原理3.

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Android开发环境配置避坑指南

《Android开发环境配置避坑指南》本文主要介绍了Android开发环境配置过程中遇到的问题及解决方案,包括VPN注意事项、工具版本统一、Gerrit邮箱配置、Git拉取和提交代码、MergevsR... 目录网络环境:VPN 注意事项工具版本统一:android Studio & JDKGerrit的邮

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA