diffusion初探——使用hugging face镜像网站所遇到的问题

2024-04-16 05:36

本文主要是介绍diffusion初探——使用hugging face镜像网站所遇到的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


在这里插入图片描述

序言

近期hugging face官网无法直接从国内访问(可用梯子解决),故无法像之前方法在服务器上直接访问,本文采取的方法是:使用国内替换原hugging face网站,https://hf-mirror.com/
但这样势必会带来一些问题,这里将使用DreamBooth生成“土豆先生”作为示例,逐一描述本人遇到的问题:本人刚接触diffusion,不喜勿喷)

问题

1.登录问题

from huggingface_hub import notebook_login
notebook_login()

以往运行上述代码,便可弹出一个窗口,输入token即可登录,
image.png
而现在报错:
image.png
查找原因发现是

“Ipywidgets (Vbox) not showing up on Jupyter notebook”

但并非Ipywidgets,笔者尝试了重新安装Ipywidgets和安装有关插件,但并没有效果,最后想到是网络原因,更改镜像源:

import os
#更改huggingface网址
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com/'
# 每次使用均要重新设置,不如写入.bashrc,则无需反复写入(linux代码如下:)
!echo 'export HF_ENDPOINT="https://hf-mirror.com"' >> ~/.bashrc

image.png

2.预训练参数载入问题

在使用DiffusionPipeline.from_pretrained时,发现无法找到对应的url,即:url为https://hf-mirror.com//api/models/sd-dreambooth-library/mr-potato-head,但实际是https://hf-mirror.com/sd-dreambooth-library/mr-potato-head,多了“/api/models/”,尝试通过继承的方式解决,未果!
有知道解决的小伙伴在评论区留言,感谢!

from diffusers import DiffusionPipeline
model_id = "sd-dreambooth-library/mr-potato-head"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device
)

image.png
遂采用离线下载的方式进行实现:(注意只使用本地文件 local_files_only = True)

from diffusers import DiffusionPipeline
# Check out https://huggingface.co/sd-dreambooth-library for loads of models from the community
model_id = "/root/lanyun-tmp/data"
# model_id = "sd-dreambooth-library/mr-potato-head"# Load the pipeline 
# 只使用本地文件 local_files_only = True
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16,local_files_only = True).to(device
)

image.png

3.离线下载问题

主要推荐 使用huggingface-cli下载数据,–resume-download是模型名字,–local-dir是本地地址。

!huggingface-cli download --resume-download sd-dreambooth-library/mr-potato-head --local-dir /root/lanyun-tmp/data  

使用huggingface-cli下载数据

huggingface-cli 隶属于 huggingface_hub
库,不仅可以下载模型、数据,还可以可以登录huggingface、上传模型、数据等。huggingface-cli
属于官方工具,其长期支持肯定是最好的。优先推荐!
–local-dir-use-symlinks False
参数可选,因为huggingface的工具链默认会使用符号链接来存储下载的文件,导致–local-dir指定的目录中都是一些“链接文件”,真实模型则存储在~/.cache/huggingface下,如果不喜欢这个可以用
–local-dir-use-symlinks False取消这个逻辑。
参考链接:https://zhuanlan.zhihu.com/p/663712983

但笔者在–local-dir-use-symlinks
False时,发现其只会存储在~/.cache/huggingface下,且不完整,故取消了。

使用git lfs下载

方法简单但网络连接不好:

sudo apt-get install git-lfs
git clone https://hf-mirror.com/johnowhitaker/ddpm-butterflies-32px

推荐先GIT_LFS_SKIP_SMUDGE=1 git clone(跳过下载 LFS 文件)

其次再对大文件用第三方、成熟的多线程下载工具,Linux 和 Mac OS 推荐hfd脚本+aria2c,Windows 推荐
IDM。用第三方工具的好处是,下载上百GB的模型、数据集,你可以放个一晚上,第二天就下载好了,而不是第二天早晨发现下载了10%断了还得继续。

笔者下载七十多MB的.bin文件还给我断了,只下小的还行,特别是只有几个LFS文件时,简单好用!

代码:

# !export HF_ENDPOINT='https://hf-mirror.com/'
import os
#更改huggingface网址
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com/'
# !echo 'export HF_ENDPOINT="https://hf-mirror.com"' >> ~/.bashrc
from huggingface_hub import notebook_login
notebook_login()%pip install -U diffusers datasets transformers accelerate ftfy pyarrow==9.0.0 matplotlibimport numpy as np
import torch
import torch.nn.functional as F
from matplotlib import pyplot as plt
from PIL import Image
# Mac users may need device = 'mps' (untested)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#数据下载
!huggingface-cli download --resume-download sd-dreambooth-library/mr-potato-head --local-dir /root/lanyun-tmp/data  # 观察采样步骤数量和结果关系
prompt = "an abstract oil painting of sks mr potato head by picasso"
# prompt = "an beautiful lady walk in the street on a sunny day"
#num_inference_steps 采样步骤数量,guidance_scale 输出与提示的匹配程度
num_list_length = np.arange(30,130,10)
images = []
for i in num_list_length:image = pipe(prompt, num_inference_steps=i, guidance_scale=0.7).images[0]images.append(image)#可视化
# make_grid(images)
import matplotlib.pyplot as plt
# 创建一个新的 matplotlib 图片和子图,设置每个子图的大小为10x10
fig, axs = plt.subplots(1, len(images), figsize=(10*len(images), 10))
# 遍历每个图片和对应的子图
for img, ax, size in zip(images, axs, num_list_length):# 显示图片ax.imshow(img)# 移除坐标轴ax.axis('off')# 在图片下方添加标题ax.set_title(str(size),fontsize=20)
# 显示所有的子图
plt.show()
# 保存图片到文件
fig.savefig('采样步骤数量和结果关系.png')

215c20b94285bb4a17da13b57cec4b5.png

这篇关于diffusion初探——使用hugging face镜像网站所遇到的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907912

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三