diffusion初探——使用hugging face镜像网站所遇到的问题

2024-04-16 05:36

本文主要是介绍diffusion初探——使用hugging face镜像网站所遇到的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


在这里插入图片描述

序言

近期hugging face官网无法直接从国内访问(可用梯子解决),故无法像之前方法在服务器上直接访问,本文采取的方法是:使用国内替换原hugging face网站,https://hf-mirror.com/
但这样势必会带来一些问题,这里将使用DreamBooth生成“土豆先生”作为示例,逐一描述本人遇到的问题:本人刚接触diffusion,不喜勿喷)

问题

1.登录问题

from huggingface_hub import notebook_login
notebook_login()

以往运行上述代码,便可弹出一个窗口,输入token即可登录,
image.png
而现在报错:
image.png
查找原因发现是

“Ipywidgets (Vbox) not showing up on Jupyter notebook”

但并非Ipywidgets,笔者尝试了重新安装Ipywidgets和安装有关插件,但并没有效果,最后想到是网络原因,更改镜像源:

import os
#更改huggingface网址
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com/'
# 每次使用均要重新设置,不如写入.bashrc,则无需反复写入(linux代码如下:)
!echo 'export HF_ENDPOINT="https://hf-mirror.com"' >> ~/.bashrc

image.png

2.预训练参数载入问题

在使用DiffusionPipeline.from_pretrained时,发现无法找到对应的url,即:url为https://hf-mirror.com//api/models/sd-dreambooth-library/mr-potato-head,但实际是https://hf-mirror.com/sd-dreambooth-library/mr-potato-head,多了“/api/models/”,尝试通过继承的方式解决,未果!
有知道解决的小伙伴在评论区留言,感谢!

from diffusers import DiffusionPipeline
model_id = "sd-dreambooth-library/mr-potato-head"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device
)

image.png
遂采用离线下载的方式进行实现:(注意只使用本地文件 local_files_only = True)

from diffusers import DiffusionPipeline
# Check out https://huggingface.co/sd-dreambooth-library for loads of models from the community
model_id = "/root/lanyun-tmp/data"
# model_id = "sd-dreambooth-library/mr-potato-head"# Load the pipeline 
# 只使用本地文件 local_files_only = True
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16,local_files_only = True).to(device
)

image.png

3.离线下载问题

主要推荐 使用huggingface-cli下载数据,–resume-download是模型名字,–local-dir是本地地址。

!huggingface-cli download --resume-download sd-dreambooth-library/mr-potato-head --local-dir /root/lanyun-tmp/data  

使用huggingface-cli下载数据

huggingface-cli 隶属于 huggingface_hub
库,不仅可以下载模型、数据,还可以可以登录huggingface、上传模型、数据等。huggingface-cli
属于官方工具,其长期支持肯定是最好的。优先推荐!
–local-dir-use-symlinks False
参数可选,因为huggingface的工具链默认会使用符号链接来存储下载的文件,导致–local-dir指定的目录中都是一些“链接文件”,真实模型则存储在~/.cache/huggingface下,如果不喜欢这个可以用
–local-dir-use-symlinks False取消这个逻辑。
参考链接:https://zhuanlan.zhihu.com/p/663712983

但笔者在–local-dir-use-symlinks
False时,发现其只会存储在~/.cache/huggingface下,且不完整,故取消了。

使用git lfs下载

方法简单但网络连接不好:

sudo apt-get install git-lfs
git clone https://hf-mirror.com/johnowhitaker/ddpm-butterflies-32px

推荐先GIT_LFS_SKIP_SMUDGE=1 git clone(跳过下载 LFS 文件)

其次再对大文件用第三方、成熟的多线程下载工具,Linux 和 Mac OS 推荐hfd脚本+aria2c,Windows 推荐
IDM。用第三方工具的好处是,下载上百GB的模型、数据集,你可以放个一晚上,第二天就下载好了,而不是第二天早晨发现下载了10%断了还得继续。

笔者下载七十多MB的.bin文件还给我断了,只下小的还行,特别是只有几个LFS文件时,简单好用!

代码:

# !export HF_ENDPOINT='https://hf-mirror.com/'
import os
#更改huggingface网址
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com/'
# !echo 'export HF_ENDPOINT="https://hf-mirror.com"' >> ~/.bashrc
from huggingface_hub import notebook_login
notebook_login()%pip install -U diffusers datasets transformers accelerate ftfy pyarrow==9.0.0 matplotlibimport numpy as np
import torch
import torch.nn.functional as F
from matplotlib import pyplot as plt
from PIL import Image
# Mac users may need device = 'mps' (untested)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#数据下载
!huggingface-cli download --resume-download sd-dreambooth-library/mr-potato-head --local-dir /root/lanyun-tmp/data  # 观察采样步骤数量和结果关系
prompt = "an abstract oil painting of sks mr potato head by picasso"
# prompt = "an beautiful lady walk in the street on a sunny day"
#num_inference_steps 采样步骤数量,guidance_scale 输出与提示的匹配程度
num_list_length = np.arange(30,130,10)
images = []
for i in num_list_length:image = pipe(prompt, num_inference_steps=i, guidance_scale=0.7).images[0]images.append(image)#可视化
# make_grid(images)
import matplotlib.pyplot as plt
# 创建一个新的 matplotlib 图片和子图,设置每个子图的大小为10x10
fig, axs = plt.subplots(1, len(images), figsize=(10*len(images), 10))
# 遍历每个图片和对应的子图
for img, ax, size in zip(images, axs, num_list_length):# 显示图片ax.imshow(img)# 移除坐标轴ax.axis('off')# 在图片下方添加标题ax.set_title(str(size),fontsize=20)
# 显示所有的子图
plt.show()
# 保存图片到文件
fig.savefig('采样步骤数量和结果关系.png')

215c20b94285bb4a17da13b57cec4b5.png

这篇关于diffusion初探——使用hugging face镜像网站所遇到的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907912

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代