Java锁是如何保证数据可见性的 (本文未经过技术多方验证,仅供留存)

2024-04-16 03:48

本文主要是介绍Java锁是如何保证数据可见性的 (本文未经过技术多方验证,仅供留存),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在 java.util.concurrent.locks.Lock 接口的Javadoc中有这样一段话:

All Lock implementations must enforce the same memory synchronization semantics as provided by the built-in monitor lock :

  • A successful lock operation acts like a successful monitorEnter action
  • A successful unlock operation acts like a successful monitorExit action

Unsuccessful locking and unlocking operations, and reentrant locking/unlocking operations, do not require any memory synchronization effects.

这段话的核心是j.u.c.locks.Lock接口的实现类具有和synchronized内置锁一样的内存同步语义。

不同于由JVM底层实现的内置锁,Lock接口的实现类是直接用Java代码实现的。如何保证了内存中数据的可见性?下面进行一下分析。

可见性

什么是可见性?如果一个线程对于另外一个线程是可见的,那么这个线程的修改就能够被另一个线程立即感知到。用一个简单的例子来说明:

boolean ok = false;
int a = 0;// Thread a
a = 1
ok = true// Thread b
// 可能一直循环下去
while (ok) {// 输出的number的值不一定是1System.out.println(a)
}

Thread b中的循环可能会一直持续下去,因为Thread a设置的ok的值并不一定立即被Thread b感知到,并且输出的a的值也不一定是1。

在多线程程序中,没有做正确的同步是无法保证内存中数据的可见性的。

用锁来保证可见性

我们可以利用Java锁来保证多线程程序中数据的可见性,来看下面这个例子:

public class Counter {private static int counter = 0;// 第一种方式:没有做同步操作public static int incrCounter1() {return counter++;}// 第二种方式:使用synchronized同步public synchronized static int incrCounter2() {return counter++;}// 第三种方式:使用ReentrantLock同步private static ReentrantLock lock = new ReentrantLock();public static int incrCounter3() {try {lock.lock();return counter++;} finally {lock.unlock();}}
}

显然,incrCounter1不是线程安全的,在一个线程写入一个最新的值后,无法保证另外一个线程能立即读到最新写入的值,incrCounter2和incrCounter3分别利用内置锁synchronized和ReentrantLock来保证了其它线程能看到最新的counter的值,达到我们想要的效果。

Java锁保证可见性的具体实现

Happens-before规则

从JDK 5开始,JSR-133定义了新的内存模型,内存模型描述了多线程代码中的哪些行为是合法的,以及线程间如何通过内存进行交互。

新的内存模型语义在内存操作(读取字段,写入字段,加锁,解锁)和其他线程操作上创建了一些偏序规则,这些规则又叫作Happens-before规则。它的含义是当一个动作happens before另一个动作,这意味着第一个动作被保证在第二个动作之前被执行并且结果对其可见。我们利用Happens-before规则来解释Java锁到底如何保证了可见性。

Java内存模型一共定义了八条Happens-before规则,和Java锁相关的有以下两条:

  1. 内置锁的释放锁操作发生在该锁随后的加锁操作之前
  2. 一个volatile变量的写操作发生在这个volatile变量随后的读操作之前

synchronized提供的可见性

synchronized有两种用法,一种可以用来修饰方法,另外一种可以用来修饰代码块。我们以synchronized代码块为例:

synchronized(SomeObject) {// code
}

因为synchronized代码块是互斥访问的,只有一个线程释放了锁,另一个线程才能进入代码块中执行。

由上述Happens-before规则第一条:

内置锁的释放锁操作发生在该锁随后的加锁操作之前

假设当线程a释放锁后,线程b拿到了锁并且开始执行代码块中的代码时,线程b必然能够看到线程a看到的所有结果,所以synchronized能够保证线程间数据的可见性。

j.u.c.locks.Lock提供的可见性

volatile关键字的可见性

对第一个代码样例做一下改造,用volatile关键字来修饰ok,其余不变:

volatile boolean ok = false
int a = 0// Thread a
a = 1
ok = true// Thread b
if (ok) {// 确保a的值为1 System.out.println(a)
}

根据上述Happens-before规则第二条:

一个volatile变量的写操作发生在这个volatile变量随后的读操作之前

假设线程a将ok的值设置为true,那么如果线程b看到ok的值为true,一定可以保证输出的a的值是1。

ReentrantLock可见性保证的具体实现

j.u.c.locks.Lock接口定义了六个方法:

public interface Lock {void lock();void lockInterruptibly() throws InterruptedException;boolean tryLock();boolean tryLock(long time, TimeUnit unit) throws InterruptedException;void unlock();Condition newCondition();
}

在j.u.c包中实现Lock接口的类主要有ReentrantLock和ReentrantReadWriteLock,下面以ReentrantLock为例来说明(ReentrantReadWriteLock原理相同)。

先来看ReentrantLock类的lock方法和unlock方法的实现:

public void lock() {sync.lock();
}// sync.lock()实现
final void lock() {acquire(1);
}public void unlock() {sync.release(1);
}

lock方法和unlock方法的具体实现都代理给了sync对象,来看一下sync对象的定义:

abstract static class Sync extends AbstractQueuedSynchronizerstatic final class FairSync extends Syncpublic ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();
}

根据ReentrantLock的构造参数,sync对象可以是FairSync(公平锁)或者是NonfairSync(非公平锁),我们以FairSync为例(NonfairSync原理类似)来说明。

从上面代码中可以看出,lock方法和unlock方法的具体实现都是由acquire和release方法完成的,而FairSync类中并没有定义acquire方法和release方法,这两个方法都是在Sync的父类AbstractQueuedSynchronizer类中实现的。

public final void acquire(int arg) {// 只关注tryAcquire即可if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();
}public final boolean release(int arg) {// 只关注tryRelease即可if (tryRelease(arg)) {Node h = head;if (h != null && h.waitStatus != 0)unparkSuccessor(h);return true;}return false;
}

acquire方法的大致步骤:tryAcquire会尝试获取锁,如果获取失败会将当前线程加入等待队列,并挂起当前线程。当前线程会等待被唤醒,被唤醒后再次尝试获取锁。

release方法的大致步骤:tryRelease会尝试释放锁,如果释放成功可能会唤醒其它线程,释放失败会抛出异常。

我们可以看出,获取锁和释放锁的具体操作是在tryAcquire和tryRelease中实现的,而tryAcquire和tryRelease在父类AbstractQueuedSynchronizer中没有定义,留给子类FairSync去实现。

我们来看一下FairSync类的tryAcquire和tryRelease的具体实现:

// state变量定义在AbstractQueuedSynchronizer中,表示同步状态。
private volatile int state;protected final boolean tryAcquire(int acquires) {final Thread current = Thread.currentThread();// 读Stateint c = getState();if (c == 0) {// 获取到锁会写stateif (!hasQueuedPredecessors() &&compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0)throw new Error("Maximum lock count exceeded");// 写statesetState(nextc);return true;}return false;
}protected final boolean tryRelease(int releases) {// 读stateint c = getState() - releases;if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;if (c == 0) {free = true;setExclusiveOwnerThread(null);}// 写statesetState(c);return free;
}

从上面的代码中可以看到有一个volatile state变量,这个变量用来表示同步状态,获取锁时会先读取state的值,获取成功后会把值从0修改为1。当释放锁时,也会先读取state的值然后进行修改。也就是说,无论是成功获取到锁还是成功释放掉锁,都会先读取state变量的值,再进行修改。

我们将上面的代码做个简化,只留下关键步骤:

private volatile int state;void lock() {read stateif (can get lock)write state
}void unlock() {write state
}

假设线程a通过调用lock方法获取到锁,此时线程b也调用了lock方法,因为a尚未释放锁,b只能等待。a在获取锁的过程中会先读state,再写state。当a释放掉锁并唤醒b,b会尝试获取锁,也会先读state,再写state。

我们注意到上述提到的Happens-before规则的第二条:

一个volatile变量的写操作发生在这个volatile变量随后的读操作之前

可以推测出,当线程b执行获取锁操作,读取了state变量的值后,线程a在写入state变量之前的任何操作结果对线程b都是可见的。

由此,我们可以得出结论Lock接口的实现类能实现和synchronized内置锁一样的内存数据可见性。

结束语

ReentrantLock及其它Lock接口实现类实现内存数据可见性的方式相对比较隐秘,借助了volatile关键字间接地实现了可见性。其实不光是Lock接口实现类,因为j.u.c包中大部分同步器的实现都是基于AbstractQueuedSynchronizer类来实现的,因此这些同步器也能够提供一定的可见性,有兴趣的同学可以尝试用类似的思路去分析。

这篇关于Java锁是如何保证数据可见性的 (本文未经过技术多方验证,仅供留存)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907720

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏