JavaEE之锁策略,cas 和 synchronized 优化过程深入浅出

2024-04-15 15:12

本文主要是介绍JavaEE之锁策略,cas 和 synchronized 优化过程深入浅出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

题外话

正题

 锁策略

乐观锁和悲观锁

轻量锁和重量锁

CAS算法(Compare And Swap)

自旋锁和挂起等待锁

普通互斥锁和读写锁

公平锁和非公平锁

可重入锁和不可重入锁

synchronized原理

基本特点

锁升级

其它锁优化

锁消除

锁粗化

小结


 

题外话

时间紧任务重,直接开始讲解,今天内容大都是概念内容

正题

 锁策略

乐观锁和悲观锁

乐观锁:乐观锁会认为锁竞争不是很激烈,做的准备工作比较少,开销更小(时间开销,系统资源开销),效率更高一些

悲观锁:悲观锁会认为锁竞争很激烈,做的准备工作比较多,开销更大(时间开销,系统资源开销),效率更低一些

具体使用哪种锁要看实际情况,应用场景

乐观锁一般用在线程竞争一个锁冲突比较少的情况

悲观锁恰恰相反,一般用在线程竞争一个锁冲突比较多的情况

轻量锁和重量锁

轻量锁:开销比较小的锁,需要在用户态中完成,加锁机制一般依赖CAS算法实现

重量锁:开销比较大的锁,需要在内核态中完成, 加锁机制重度依赖了OS提供了mutex

CAS算法(Compare And Swap)

CAS算法是一种无锁算法

无锁算法:基于硬件原语实现,在不使用锁(没有线程被阻塞)的情况下实现多线程之间的变量同步

算法涉及到三个操作数:

需要读写的内存值V

进行比较的值A

要写入的新值B

返回值为boolean类型

算法执行步骤

A和V先比较是否相等(比较)

如果相等,把B写入V(交换)

相等返回true,不相等返回false

自旋锁和挂起等待锁

自旋锁:当线程获取不到锁的时候,不会放弃CPU,会频繁的循环尝试去获取锁,会造成CPU的资源浪费,当锁释放的时候,可以第一时间获取锁, synchronized中的轻量级锁策略⼤概率就是通过⾃旋锁的方式实现的.

挂起等待锁:当线程获取不到锁的时候,会进行堵塞等待,放弃CPU,进入等待队列中,等到锁释放的时候再让系统调度

举个例子

先说自旋锁

挂起等待锁

希望以上例子能帮助大家更好的理解,自旋锁和挂起等待锁

普通互斥锁和读写锁

普通互斥锁:在Java中,只有加锁和解锁两个操作的锁,就是普通互斥锁,如synchronized

读写锁:多线程之间,数据的读取⽅之间不会产⽣线程安全问题,但数据的写入方互相之间以及和读者之间都 需要进行互斥。如果两种场景下都⽤同⼀个锁,就会产⽣极⼤的性能损耗。所以读写锁因此⽽产⽣。

读锁和读锁之间不会产生互斥

            写锁和写锁之间会产生互斥

            写锁和读锁之间会产生互斥

synchronized不是读写锁

公平锁和非公平锁

公平锁:当多个线程获取锁的时候,会根据先来后到的原则,当锁被释放的时候,最先等待的线程会获取到锁,公平锁需要记录线程先来后到,需要额外的数据结构

非公平锁:当多个线程获取锁的时候,不会根据先来后到的原则,而是根据机会均等的原则,当锁被释放的时候,每个线程都有机会获取到锁

synchronized是非公平锁

举个例子:当厕所里有人占用,有很多人排队,而你比其他人来的都早,等厕所里面的人出来,你就可以占用厕所,这就是公平锁

                当厕所里有人占用,但是这个厕所不能排队,一群人在门口等待,每个人占用厕所的几率是均等的,哪怕你来的很早,也不一定能轮到你

          

可重入锁和不可重入锁

可重入锁:允许一个线程多次获取同一把锁

⽐如⼀个递归函数⾥有加锁操作,递归过程中这个锁会阻塞自己吗?如果不会,那么这个锁就是可重入锁(因为这个原因可重⼊锁也叫做递归锁)。

不可重入锁:不允许一个线程多次获取同一把锁

Java⾥只要以Reentrant开头命名的锁都是可重⼊锁,⽽且JDK提供的所有现成的Lock实现类,包括 synchronized关键字锁都是可重⼊的。

synchronized原理

基本特点

结合上⾯的锁策略,我们就可以总结出,synchronized具有以下特性(只考虑JDK1.8):

1. 开始时是乐观锁,如果锁冲突频繁,就转换为悲观锁.

2. 开始是轻量级锁实现,如果锁被持有的时间较⻓,就转换成重量级锁.

3. 实现轻量级锁的时候⼤概率⽤到的⾃旋锁策略

4. 是⼀种不公平锁

5. 是⼀种可重⼊锁

6. 不是读写锁

锁升级

JVM将synchronized锁分为⽆锁、偏向锁、轻量级锁、重量级锁状态。会根据情况,进⾏依次升 级。

无锁:代码中没有加锁

偏向锁:第一个尝试加锁的进程,会进入"偏向锁"的状态,偏向锁不是真的加锁,而是给对象头中做⼀个"偏向锁的标记"

偏向锁本质上相当于"延迟加锁".能不加锁就不加锁,尽量来避免不必要的加锁开销. 但是该做的标记还是得做的,否则⽆法区分何时需要真正加锁.

轻量级锁:随着其他线程进入竞争,偏向锁状态被消除,进入轻量级锁状态(自适应的自旋锁).


此处的轻量级锁就是通过CAS来实现.
●通过CAS检查并更新一块内存(比如null =>该线程引用)
如果更新成功,则认为加锁成功
●如果更新失败, 则认为锁被占用,继续自旋式的等待(并不放弃CPU).


自旋操作是一直让CPU空转,比较浪费CPU资源.
因此此处的自旋不会一直持续进行, 而是达到一定的时间/重 试次数,就不再自旋了.
也就是所谓的"自适应"

重量级锁:如果竞争进一步激烈,自旋不能快速获取到锁状态,就会膨胀为重量级锁
此处的重量级锁就是指用到内核提供的mutex.


●执行加锁操作,先进入内核态.在内核态判定当前锁是否已经被占用
●如果该锁没有占用,则加锁成功,并切换回用户态.
●如果该锁被占用,则加锁失败.此时线程进入锁的等待队列,挂起.等待被操作系统唤醒.
●经历了一系列的沧海桑田,这个锁被其他线程释放了,操作系统也想起了这个挂起的线程,于是唤醒这个线程,尝试重新获取锁.

其它锁优化

锁消除

编译器+JVM判断锁是否可消除.如果可以,就直接消除

什么是"锁消除"有些应用程序的代码中,用到了synchronized,但其实没有在多线程环境下.
在单线程情况下,加锁没有必要,而且会浪费资源开销

锁粗化

⼀段逻辑中如果出现多次加锁解锁,编译器+JVM会自动进行锁的粗化

锁粗化就是多个连续加锁,解锁的操作放在一起,这样会使锁的粒度越粗,否则锁的粒度就越细


 

小结

 以上就是本篇博客所有内容

喜欢的麻烦给个三连(点赞关注收藏!!!)

这篇关于JavaEE之锁策略,cas 和 synchronized 优化过程深入浅出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906164

相关文章

Spring实现Bean的初始化和销毁的方式

《Spring实现Bean的初始化和销毁的方式》:本文主要介绍Spring实现Bean的初始化和销毁的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Bean的初始化二、Bean的销毁总结在前面的章节当中介绍完毕了ApplicationContext,也就

Java的"伪泛型"变"真泛型"后对性能的影响

《Java的伪泛型变真泛型后对性能的影响》泛型擦除本质上就是擦除与泛型相关的一切信息,例如参数化类型、类型变量等,Javac还将在需要时进行类型检查及强制类型转换,甚至在必要时会合成桥方法,这篇文章主... 目录1、真假泛型2、性能影响泛型存在于Java源代码中,在编译为字节码文件之前都会进行泛型擦除(ty

Java中的getBytes()方法使用详解

《Java中的getBytes()方法使用详解》:本文主要介绍Java中getBytes()方法使用的相关资料,getBytes()方法有多个重载形式,可以根据需要指定字符集来进行转换,文中通过代... 目录前言一、常见重载形式二、示例代码三、getBytes(Charset charset)和getByt

Java使用Stream流的Lambda语法进行List转Map的操作方式

《Java使用Stream流的Lambda语法进行List转Map的操作方式》:本文主要介绍Java使用Stream流的Lambda语法进行List转Map的操作方式,具有很好的参考价值,希望对大... 目录背景Stream流的Lambda语法应用实例1、定义要操作的UserDto2、ListChina编程转成M

Spring框架中@Lazy延迟加载原理和使用详解

《Spring框架中@Lazy延迟加载原理和使用详解》:本文主要介绍Spring框架中@Lazy延迟加载原理和使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、@Lazy延迟加载原理1.延迟加载原理1.1 @Lazy三种配置方法1.2 @Component

使用easy connect之后,maven无法使用,原来需要配置-Djava.net.preferIPv4Stack=true问题

《使用easyconnect之后,maven无法使用,原来需要配置-Djava.net.preferIPv4Stack=true问题》:本文主要介绍使用easyconnect之后,maven无法... 目录使用easGWowCy connect之后,maven无法使用,原来需要配置-DJava.net.pr

idea报错java: 非法字符: ‘\ufeff‘的解决步骤以及说明

《idea报错java:非法字符:‘ufeff‘的解决步骤以及说明》:本文主要介绍idea报错java:非法字符:ufeff的解决步骤以及说明,文章详细解释了为什么在Java中会出现uf... 目录BOM是什么?1. BOM的作用2. 为什么会出现 \ufeff 错误?3. 如何解决 \ufeff 问题?最

使用Java编写一个字符脱敏工具类

《使用Java编写一个字符脱敏工具类》这篇文章主要为大家详细介绍了如何使用Java编写一个字符脱敏工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、字符脱敏工具类2、测试工具类3、测试结果1、字符脱敏工具类import lombok.extern.slf4j.Slf4j

Java实现按字节长度截取字符串

《Java实现按字节长度截取字符串》在Java中,由于字符串可能包含多字节字符,直接按字节长度截取可能会导致乱码或截取不准确的问题,下面我们就来看看几种按字节长度截取字符串的方法吧... 目录方法一:使用String的getBytes方法方法二:指定字符编码处理方法三:更精确的字符编码处理使用示例注意事项方

Spring三级缓存解决循环依赖的解析过程

《Spring三级缓存解决循环依赖的解析过程》:本文主要介绍Spring三级缓存解决循环依赖的解析过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、循环依赖场景二、三级缓存定义三、解决流程(以ServiceA和ServiceB为例)四、关键机制详解五、设计约