I.MX6ULL芯片的SPI 主机驱动框架的简单分析

2024-04-15 03:44

本文主要是介绍I.MX6ULL芯片的SPI 主机驱动框架的简单分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 简介

SPI 驱动框架和 I2C 很类似,都分为主机控制器驱动和设备驱动,主机控制器也就是 SOC的 SPI 控制器接口。

前一篇文章简单学习了Linux下SPI主控的驱动。文章如下:

Linux下SPI驱动:SPI主机驱动简介-CSDN博客

本文来简单分析一下IMX6ULL(这个SOC)的 SPI主机控制器的驱动。

二.  Linux下SPI驱动:I.MX6U SPI 主机驱动分析

I2C 的适配器驱动一样, SPI 主机驱动一般都由 SOC 厂商编写好了,打开 imx6ull.dtsi 文件,找到如下所示内容:
				ecspi3: ecspi@02010000 {#address-cells = <1>;#size-cells = <0>;compatible = "fsl,imx6ul-ecspi", "fsl,imx51-ecspi";reg = <0x02010000 0x4000>;interrupts = <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>;clocks = <&clks IMX6UL_CLK_ECSPI3>,<&clks IMX6UL_CLK_ECSPI3>;clock-names = "ipg", "per";dmas = <&sdma 7 7 1>, <&sdma 8 7 2>;dma-names = "rx", "tx";status = "disabled";};
重点来看一下第 4 行的 compatible 属性值, compatible 属性有两个值“ fsl,imx6ul-ecspi ”和 fsl,imx51-ecspi ”。在 Linux 内核源码中搜素这两个属性值即可找到 I.MX6U 对应的 ECSPI(SPI)
主机驱动。
I.MX6U ECSPI 主机驱动文件为 drivers/spi/spi-imx.c ,在此文件中找到如下内容:
static struct platform_device_id spi_imx_devtype[] = {{.name = "imx1-cspi",.driver_data = (kernel_ulong_t) &imx1_cspi_devtype_data,}, {.name = "imx21-cspi",.driver_data = (kernel_ulong_t) &imx21_cspi_devtype_data,
..................}, {.name = "imx6ul-ecspi",.driver_data = (kernel_ulong_t) &imx6ul_ecspi_devtype_data,}, {/* sentinel */}
};static const struct of_device_id spi_imx_dt_ids[] = {{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
....................{ .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },{ /* sentinel */ }
};.......................
static struct platform_driver spi_imx_driver = {.driver = {.name = DRIVER_NAME,.of_match_table = spi_imx_dt_ids,.pm = IMX_SPI_PM,},.id_table = spi_imx_devtype,.probe = spi_imx_probe,.remove = spi_imx_remove,
};
module_platform_driver(spi_imx_driver);

1 行, spi_imx_devtype SPI 无设备树匹配表。
17 行, spi_imx_dt_ids SPI 设备树匹配表。
21 行,“ fsl,imx6ul-ecspi ” 匹配项,因此,可知 I.MX6U ECSPI 驱动就是 spi-imx.c 这个文件。
26~35 行, platform_driver 驱动框架,和 I2C 的适配器驱动一样, SPI 主机驱动器采用了 platfom 驱动框架。 当设备和驱动匹配成功以后, spi_imx_probe 函数就会执行。
spi_imx_probe 函数会从设备树中读取相应的节点属性值,申请并初始化 spi_master ,最后 调用 spi_bitbang_start 函数 (spi_bitbang_start 会调用 spi_register_master 函数 ) Linux 内核注册
spi_master
对于 I.MX6U 来讲, SPI 主机的最终数据收发函数为 spi_imx_transfer ,此函数通过如下层层调用最终实现 SPI 数据发送:
spi_imx_transfer-> spi_imx_pio_transfer-> spi_imx_push-> spi_imx->tx

spi_imx 是个 spi_imx_data 类型的机构指针变量,其中 tx rx 这两个成员变量分别为 SPI 数据发送和接收函数。

I.MX6U SPI 主机驱动会维护一个 spi_imx_data 类型的变量 spi_imx,并且使用 spi_imx_setupxfer 函数来设置 spi_imx tx rx 函数。根据要发送的数据数据位宽的不同,分别有 8 位、16 位和 32 位的发送函数,如下所示:

spi_imx_buf_tx_u8
spi_imx_buf_tx_u16
spi_imx_buf_tx_u32
同理,也有 8 位、 16 位和 32 位的数据接收函数,如下所示:
spi_imx_buf_rx_u8
spi_imx_buf_rx_u16
spi_imx_buf_rx_u32

我们就以 spi_imx_buf_tx_u8 这个函数为例,看看一个自己的数据发送是怎么完成的,在 spi-imx.c 文件中找到如下所示内容:
#define MXC_SPI_BUF_TX(type)						\
static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
{									\type val = 0;							\\if (spi_imx->tx_buf) {						\val = *(type *)spi_imx->tx_buf;				\spi_imx->tx_buf += sizeof(type);			\}								\\spi_imx->count -= sizeof(type);					\\writel(val, spi_imx->base + MXC_CSPITXDATA);			\
}MXC_SPI_BUF_RX(u8)
MXC_SPI_BUF_TX(u8)
可以看出, spi_imx_buf_tx_u8 函数是通过 MXC_SPI_BUF_TX 宏来实现的。
13 行就是将要发送的数据值写入到 ECSPI TXDATA 寄存器里面去,这和我们 SPI 机实验的方法一样。
将第 17 行的 MXC_SPI_BUF_TX(u8) 展开,就是 spi_imx_buf_tx_u8 函数。
其他的 tx rx 函数都是这样实现的,这里就不做介绍了。关于 I.MX6U 的主机驱动程序基本和 I2C 的适配器驱动程序类似。

这篇关于I.MX6ULL芯片的SPI 主机驱动框架的简单分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904787

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Ubuntu向多台主机批量传输文件的流程步骤

《Ubuntu向多台主机批量传输文件的流程步骤》:本文主要介绍在Ubuntu中批量传输文件到多台主机的方法,需确保主机互通、用户名密码统一及端口开放,通过安装sshpass工具,准备包含目标主机信... 目录Ubuntu 向多台主机批量传输文件1.安装 sshpass2.准备主机列表文件3.创建一个批处理脚

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

Python实现简单封装网络请求的示例详解

《Python实现简单封装网络请求的示例详解》这篇文章主要为大家详细介绍了Python实现简单封装网络请求的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装依赖核心功能说明1. 类与方法概览2.NetHelper类初始化参数3.ApiResponse类属性与方法使用实

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文