NLTK自然语言处理(2)NLTK常用命令

2024-04-14 23:32

本文主要是介绍NLTK自然语言处理(2)NLTK常用命令,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 搜索文本
    • 相似上下文
    • 共同上下文
    • 单词的位置信息离散图
  • 单词计数
    • 文本长度
    • 词汇表
    • 单词个数与单词占比
    • 平均词长、句长、每个词出现次数
  • 简单的统计
    • 频率分布
      • 频率分布类中定义的函数
    • 条件频率分布
    • 细粒度的选择词
      • 按字符长度选择单词
      • 多重条件选择单词
    • 词语搭配和双连词

搜索文本

相似上下文

similar() 用来查看与目标词出现在相似上下文中的词。第一个参数是目标词,第二个参数是相似词的个数,默认num=20

共同上下文

common_contexts() 可以查看一个列表中的词的共同上下文

单词的位置信息离散图

dispersion_plot() 可以用离散图表示词的位置信息,横轴表示从文本开头算起前方有多少词。

单词计数

文本长度

len() 文本长度计算的是单词与标点或者叫做“标识符”的数量的总和

词汇表

set() 可以生成文本的词汇表,即将重复的标识符合并后生成的列表

单词个数与单词占比

count() 可以直接返回某单词在文本中的个数

100*text4.count('a')/len(text4)#单词a的占比

平均词长、句长、每个词出现次数

 for fileid in gutenberg.fileids():num_chars = len(gutenberg.raw(fileid)) #字符数num_words = len(gutenberg.words(fileid))#词数num_sents = len(gutenberg.sents(fileid))#句子数
num_vocab = len(set(w.lower() for w in gutenberg.words(fileid)))#不区分大小写不重复词数
print(round(num_chars/num_words), round(num_words/num_sents), round(num_words/num_vocab), fileid)
#输出平均词长、平均句子长度、本文中每个词出现的平均次数(我们的词汇多样性得分)

简单的统计

频率分布

频率分布类中定义的函数

fdist = FreqDist(samples) 创建包含给定样本的频率分布
fdist[sample] += 1	增加样本的数目
fdist['monstrous']	计数给定样本出现的次数
fdist.freq('monstrous')	给定样本的频率
fdist.N()	样本总数
fdist.most_common(n)	最常见的n 个样本和它们的频率
for sample in fdist:	遍历样本
fdist.max()	数值最大的样本
fdist.tabulate()	绘制频率分布表
fdist.plot()	绘制频率分布图
fdist.plot(cumulative=True)	绘制累积频率分布图
fdist1 |= fdist2	使用fdist2 更新fdist1 中的数目
fdist1 < fdist2	测试样本在fdist1 中出现的频率是否小于fdist2

条件频率分布

当语料文本被分为几类,如文体、主题、作者等时,可以计算每个类别独立的频率分布,这将允许我们研究类别之间的系统性差异。
条件频率分布是频率分布的集合,每个频率分布有一个不同的“条件”。这个条件通常是文本的类别。
ConditionalFreqDist()
条件频率分布需要给每个事件关联一个条件。
所以不是处理一个单词词序列,我们必须处理的是一个配对序列
每个配对的形式是:(条件, 事件)

细粒度的选择词

按字符长度选择单词

多重条件选择单词

词语搭配和双连词

bigrams() 获取了包含传入词汇的双连词。
collocations() 从两个语料库中获取了一些搭配,一个“搭配”是经常在一起出现的词序列。

这篇关于NLTK自然语言处理(2)NLTK常用命令的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904319

相关文章

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Java异常捕获及处理方式详解

《Java异常捕获及处理方式详解》异常处理是Java编程中非常重要的一部分,它允许我们在程序运行时捕获并处理错误或不预期的行为,而不是让程序直接崩溃,本文将介绍Java中如何捕获异常,以及常用的异常处... 目录前言什么是异常?Java异常的基本语法解释:1. 捕获异常并处理示例1:捕获并处理单个异常解释:

MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)

《MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)》本文给大家介绍MyBatis的xml中字符串类型判空与非字符串类型判空处理方式,本文给大家介绍的非常详细,对大家的学习或... 目录完整 Hutool 写法版本对比优化为什么status变成Long?为什么 price 没事?怎

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装