机器学习 | 使用Scikit-Learn实现分层抽样

2024-04-14 22:04

本文主要是介绍机器学习 | 使用Scikit-Learn实现分层抽样,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本文中,我们将学习如何使用Scikit-Learn实现分层抽样。

什么是分层抽样?

分层抽样是一种抽样方法,首先将总体的单位按某种特征分为若干次级总体(层),然后再从每一层内进行单纯随机抽样,组成一个样本。可以提高总体指标估计值的精确度。在抽样时,将总体分成互不交叉的层,然后按一定的比例,从各层次独立地抽取一定数量的个体,将各层次取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。

分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。

如何进行分层抽样?

要执行分层抽样,您需要遵循以下讨论的步骤:

  1. 定义层:根据种族、性别、收入、教育水平、年龄组等相关特征,确定和定义人口中的子群体状态。
  2. 样本量:确定总体样本量和单个亚组样本量,确保所选每个亚组的比例在总体中具有比例代表性。
  3. 选择抽样:通过应用随机抽样技术,如简单随机抽样或系统随机抽样,从每个确定的分层中随机选择样本。
  4. 最终抽样:将来自不同层的所有样品组合成统一的代表性样品。

在这里插入图片描述

什么时候使用分层抽样?

  • 群体异质性:当群体可以根据特定特征分为相互排斥的亚组时。
  • 平等代表性:当我们想要确保一个特定的特征或一组特征在最终样本中得到充分代表时。
  • 资源限制:当您想将研究结果推广到整个人群并确保估计值对每个阶层都有效,但资源有限时。

例如,在市场调研中,如果需要调查不同年龄、性别、职业等人群的消费习惯,可以将总体按照这些特征进行分层,然后在每个层内随机抽样,从而得到更具代表性的样本。

需要注意的是,分层抽样并不是一种简单地将总体分成几份然后随机抽样的方法,而是需要考虑到各层之间的差异和相似性,以及抽样比例等因素。因此,在使用分层抽样时,需要根据具体情况进行设计和操作。

分层抽样的优点

分层抽样的优点包括:

  • 提高样本的代表性:分层抽样能够根据总体中不同层次的比例来抽取样本,从而使得样本更加具有代表性,提高由样本推断总体的精确性。

  • 便于组织:分层抽样可以根据不同的层次进行抽样,因此可以灵活地选择不同的抽样方法和组织方式,便于组织和管理。

  • 节省经费:由于分层抽样可以针对不同层次进行抽样,因此可以更加有效地利用资源,节省经费。

需要注意的是,分层抽样需要考虑到各层之间的差异和相似性,以及抽样比例等因素,因此需要更加精细的设计和操作。

与其他采样技术进行比较

分层抽样只是研究中使用的几种抽样技术之一。让我们将分层抽样与其他几种常见的抽样技术进行比较:

分层抽样:

  • 确保所有分组的代表性。当群体中存在显著变异时有用。
  • 需要了解有效分层的人群特征。

简单随机抽样:

  • 简单随机抽样很容易实现,特别是当总体是同质的时候。
  • 可能无法捕获群体内的变异性,某些亚组可能代表性不足。

整群抽样:

  • 在整群抽样中,人口被自然地分组为群组,这可能不一定基于感兴趣的特征。
  • 整个集群成为采样单位。
  • 聚类是随机选择的,并且所选聚类中的所有个体都包括在样本中。
  • 适用于地理上分散的人群,降低成本和时间。

配额抽样:

  • 随机抽样涉及根据某些特征将人口划分为亚组或配额。
  • 主要区别在于,在分层抽样中,我们从每个子组中抽取随机样本(概率抽样)。在配额抽样中,我们根据我们的知识为特定特征设定预定配额。此外,所选择的样本是非随机的,这意味着研究人员可以使用方便或判断抽样来满足预定的配额。

系统抽样:

  • 系统抽样(Systematic sampling)是一种抽样方法,在第一个成员被随机选择后,每第n个成员被选择纳入样本。这是通过选择一个随机的起点,然后从总体中挑选每第k个元素来完成的。“k”的值通过将总体的总大小除以期望的样本大小来确定。

分层抽样的实现

让我们加载 iris 数据集来实现分层采样。

import pandas as pd
from sklearn import datasetsiris = datasets.load_iris()
iris_df=pd.DataFrame(iris.data)iris_df['class']=iris.target
iris_df.columns=['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'class']iris_df['class'].value_counts()

让我们看看当分层stratify设置为None时的类分布。

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test= train_test_split(X,y, train_size=0.8, random_state=None, shuffle=True, stratify=None)print("Class distribution of train set")
print(y_train.value_counts())
print()
print("Class distribution of test set")
print(y_test.value_counts())

输出

 Class distribution of train set
0    43
2    40
1    37
Name: class, dtype: int64
Class distribution of test set
1    13
2    10
0     7
Name: class, dtype: int64

让我们看看当分层stratify设置为True时的类分布。

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test= train_test_split(X,y, train_size=0.8, random_state=None,shuffle=True, stratify=y)
print(y_train.value_counts())
print(y_test.value_counts())

输出

Class distribution of train set
0    40
2    40
1    40
Name: class, dtype: int64
Class distribution of test set
2    10
1    10
0    10
Name: class, dtype: int64

如果我们想使用k倍的分层采样,我们可以使用Scikit Learn中的StratifiedShuffleSplit类,如下所示。

  • StratifiedShuffleSplit是scikit-learn中的一个类,它提供了一种生成用于交叉验证的训练/测试数据的方法。它是专门为以下场景而设计的:您希望在将数据拆分为训练集和测试集时,确保数据集中的类分布得到维护。
  • n_splits:重新拆分迭代的次数。在示例中,n_splits=2意味着数据集将被分成2个不同的训练集/测试集。
  • test_size:要包含在测试拆分中的数据集的比例。它可以是浮点数(例如,0.2表示20%)或整数(例如,2表示2个样本)。
  • random_state:随机数生成器的种子,以确保可重复性。如果设置为整数,则每次将生成相同的随机拆分。
import numpy as np
from sklearn.model_selection import StratifiedShuffleSplit
skf = StratifiedShuffleSplit(n_splits=2, train_size = .8)
X = iris_df.iloc[:,:-1]
y = iris_df.iloc[:,-1]for i, (train_index, test_index) in enumerate(skf.split(X, y)):print(f"Fold {i}:")print(f" {iris_df.iloc[train_index]['class'].value_counts()}")print("-"*10)print(f" {iris_df.iloc[test_index]['class'].value_counts()}")print("*" * 60)

输出

Fold 0:2    40
1    40
0    40
Name: class, dtype: int64
----------2    10
1    10
0    10
Name: class, dtype: int64
************************************************************
Fold 1:2    40
1    40
0    40
Name: class, dtype: int64
----------2    10
0    10
1    10
Name: class, dtype: int64
************************************************************

总结

在本文中,我们看到了如何使用分层抽样来确保最终样本代表总体,确保感兴趣的特征既不代表不足,也不代表过度。

这篇关于机器学习 | 使用Scikit-Learn实现分层抽样的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904134

相关文章

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os