【opencv】特征点检测方法--GFTT,SIFT,FAST,SURF

2024-04-14 20:18

本文主要是介绍【opencv】特征点检测方法--GFTT,SIFT,FAST,SURF,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 特征点检测方法总结

1 .       Shi-Tomasi  1994年,Jinabo ShiCarlo Tomasi提出

原理:http://blog.csdn.net/xiaowei_cqu/article/details/7805206

提出:http://wenku.baidu.com/link?url=d-ByPLIzgzJetEH0eg9OMEiCmjVunZ1V8lufllGymzWa0_7UcANJ7pqpur4joE-MRPYRqkS2D8vRv9HAMT9dQPx1zk9m1ZxvQska7m-bgqG

实现:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/features2d/trackingmotion/good_features_to_track/good_features_to_track.html

      cvGoodFeatureToTrack函数(通过设置use_harris参数为非0,可以实现检测Harris角点)

优缺点:是对Harris的一种改进算法

      2.      SIFT1999年提出,2004年完善,David G.Lowe提出

原理:http://blog.csdn.net/dan1900/article/details/14521029

提出:1999:http://wenku.baidu.com/link?url=G8NB1abVM-qTB75Tz3x_krTDiS4GuHnXamdutUOxtZ2yozYe0nZAE28L0Tw-m2y9P60dQQKnB-vr0gisowVJQcM1W8IL1-PWd4bi_FusDJq

2004:http://www.doc88.com/p-077847145905.html

实现:http://www.cnblogs.com/tornadomeet/archive/2012/03/08/2384843.html

      http://blog.csdn.net/yang_xian521/article/details/7533922

      (non-free) 添加opencv_nonfree243.lib

优缺点:尺度不变,旋转不变,但匹配成功数目少,速度慢

3.       FAST(Features from Accelerated Tegment Test)2006年,Edward Rosten ,TomDrummond

原理:http://blog.csdn.net/yang_xian521/article/details/7411438

提出:2006:http://link.springer.com/chapter/10.1007/11744023_34  (Springer)

2010:http://www.edwardrosten.com/work/rosten_2008_faster.pdf

实现:http://www.edwardrosten.com/work/fast.html

      FastFeatureDetector函数

优缺点:计算速度快,只计算了灰度信息

4.      SURF(Speed UpRobust Feature)2006年,Bay等提出的

原理:http://blog.csdn.net/chenbang110/article/details/7541157

      http://blog.csdn.net/yangtrees/article/details/7482960

提出:http://link.springer.com/chapter/10.1007%2F11744023_32 (Springer)

实现:http://www.oschina.net/code/explore/OpenCV-2.2.0/samples/c/find_obj.cpp

      cvExtractSURF函数(non-free)

优缺点:由sift改进而来,比sift快,多幅图片时鲁棒性好。

5.      CenSurE(Center SurroundExtremas for Realtime Feature Detection and Matching)

2008年,Motiala Agrawal等

提出:http://wenku.baidu.com/link?url=lv4Spxx1kT66kf-FltX-Wa3NJw86_dpkH5kldXEbV6wY5lnbY0JbLGhP21HNF9t-y25ImzIbd3oQduwrxRfiMUJyzSO1bTLG4pI9uQPwHW3 (springer)

实现:opencv STAR (StartFeatureDetecor函数)

比较:文章提出了新的方法,并与已有特征点检测进行比较,比较时用到的算子:Harris,FAST,SIFT,SURF.方法:1. 计算当特征点是800时,对于不同的序列,特征点的可重复性。2. 计算最小的欧式距离值,对比距离区间点的个数,画折线图。3. 计算不同搜索范围下,当特征点个数是800时,每种特征点检测的可以匹配成功的百分比。4.使用the visual odometry(VO)评估每种算法的表现。5.比较了每种算法所用的时间。

6.      BRISK(Binary Robust invariant scalable keypoints) :2011年,Leutenegger,S等提出

原理:http://d.wanfangdata.com.cn/periodical_jcdzgc201305015.aspx

提出:http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6126542

实现:

优缺点:是对FAST算法的改进

二.关于特征点分析对比的相关论文

1.      有关特征点:Shi-Tmoasi,SIFT,SURF

文章:http://miua2012.swansea.ac.uk/uploads/Site/Programme/PSB05.pdf

方法:基于opencv,通过RGB分解,比较特征点的个数和鲁棒性

2.      有关特征点:FAST

文章:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5596017

方法:主要是看追踪的,用到了forward-backward(FB)漂移误差,NCC,SSD

3.      有关特征点:Shi-Tmoasi,SIFT,SURF,Fast

提出: Evaluationof Endoscopic Image Enhancement for Feature Tracking:A New Validation Framework

三.相关函数的使用

1.      特征点检测架构:http://www.opencv.org.cn/opencvdoc/2.3.2/html/modules/features2d/doc/features2d.html

2.      各种特征点检测结果对比

http://blog.csdn.net/vast_sea/article/details/8196420


原文地址:http://blog.csdn.net/u010141025/article/details/16920567

这篇关于【opencv】特征点检测方法--GFTT,SIFT,FAST,SURF的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903910

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法