【opencv】特征点检测方法--GFTT,SIFT,FAST,SURF

2024-04-14 20:18

本文主要是介绍【opencv】特征点检测方法--GFTT,SIFT,FAST,SURF,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 特征点检测方法总结

1 .       Shi-Tomasi  1994年,Jinabo ShiCarlo Tomasi提出

原理:http://blog.csdn.net/xiaowei_cqu/article/details/7805206

提出:http://wenku.baidu.com/link?url=d-ByPLIzgzJetEH0eg9OMEiCmjVunZ1V8lufllGymzWa0_7UcANJ7pqpur4joE-MRPYRqkS2D8vRv9HAMT9dQPx1zk9m1ZxvQska7m-bgqG

实现:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/features2d/trackingmotion/good_features_to_track/good_features_to_track.html

      cvGoodFeatureToTrack函数(通过设置use_harris参数为非0,可以实现检测Harris角点)

优缺点:是对Harris的一种改进算法

      2.      SIFT1999年提出,2004年完善,David G.Lowe提出

原理:http://blog.csdn.net/dan1900/article/details/14521029

提出:1999:http://wenku.baidu.com/link?url=G8NB1abVM-qTB75Tz3x_krTDiS4GuHnXamdutUOxtZ2yozYe0nZAE28L0Tw-m2y9P60dQQKnB-vr0gisowVJQcM1W8IL1-PWd4bi_FusDJq

2004:http://www.doc88.com/p-077847145905.html

实现:http://www.cnblogs.com/tornadomeet/archive/2012/03/08/2384843.html

      http://blog.csdn.net/yang_xian521/article/details/7533922

      (non-free) 添加opencv_nonfree243.lib

优缺点:尺度不变,旋转不变,但匹配成功数目少,速度慢

3.       FAST(Features from Accelerated Tegment Test)2006年,Edward Rosten ,TomDrummond

原理:http://blog.csdn.net/yang_xian521/article/details/7411438

提出:2006:http://link.springer.com/chapter/10.1007/11744023_34  (Springer)

2010:http://www.edwardrosten.com/work/rosten_2008_faster.pdf

实现:http://www.edwardrosten.com/work/fast.html

      FastFeatureDetector函数

优缺点:计算速度快,只计算了灰度信息

4.      SURF(Speed UpRobust Feature)2006年,Bay等提出的

原理:http://blog.csdn.net/chenbang110/article/details/7541157

      http://blog.csdn.net/yangtrees/article/details/7482960

提出:http://link.springer.com/chapter/10.1007%2F11744023_32 (Springer)

实现:http://www.oschina.net/code/explore/OpenCV-2.2.0/samples/c/find_obj.cpp

      cvExtractSURF函数(non-free)

优缺点:由sift改进而来,比sift快,多幅图片时鲁棒性好。

5.      CenSurE(Center SurroundExtremas for Realtime Feature Detection and Matching)

2008年,Motiala Agrawal等

提出:http://wenku.baidu.com/link?url=lv4Spxx1kT66kf-FltX-Wa3NJw86_dpkH5kldXEbV6wY5lnbY0JbLGhP21HNF9t-y25ImzIbd3oQduwrxRfiMUJyzSO1bTLG4pI9uQPwHW3 (springer)

实现:opencv STAR (StartFeatureDetecor函数)

比较:文章提出了新的方法,并与已有特征点检测进行比较,比较时用到的算子:Harris,FAST,SIFT,SURF.方法:1. 计算当特征点是800时,对于不同的序列,特征点的可重复性。2. 计算最小的欧式距离值,对比距离区间点的个数,画折线图。3. 计算不同搜索范围下,当特征点个数是800时,每种特征点检测的可以匹配成功的百分比。4.使用the visual odometry(VO)评估每种算法的表现。5.比较了每种算法所用的时间。

6.      BRISK(Binary Robust invariant scalable keypoints) :2011年,Leutenegger,S等提出

原理:http://d.wanfangdata.com.cn/periodical_jcdzgc201305015.aspx

提出:http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6126542

实现:

优缺点:是对FAST算法的改进

二.关于特征点分析对比的相关论文

1.      有关特征点:Shi-Tmoasi,SIFT,SURF

文章:http://miua2012.swansea.ac.uk/uploads/Site/Programme/PSB05.pdf

方法:基于opencv,通过RGB分解,比较特征点的个数和鲁棒性

2.      有关特征点:FAST

文章:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5596017

方法:主要是看追踪的,用到了forward-backward(FB)漂移误差,NCC,SSD

3.      有关特征点:Shi-Tmoasi,SIFT,SURF,Fast

提出: Evaluationof Endoscopic Image Enhancement for Feature Tracking:A New Validation Framework

三.相关函数的使用

1.      特征点检测架构:http://www.opencv.org.cn/opencvdoc/2.3.2/html/modules/features2d/doc/features2d.html

2.      各种特征点检测结果对比

http://blog.csdn.net/vast_sea/article/details/8196420


原文地址:http://blog.csdn.net/u010141025/article/details/16920567

这篇关于【opencv】特征点检测方法--GFTT,SIFT,FAST,SURF的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903910

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定