Python和R概率统计算法建模评估气象和运动

2024-04-14 20:04

本文主要是介绍Python和R概率统计算法建模评估气象和运动,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 概率统计数学:🎯Python和R计算和算法实现
  2. 气象学:
    1. 计算和可视化:🎯全球陆地-海洋平均年平均表面温度:🖊直方图温度异常,🖊显示分位数-分位数,🖊绘制线性趋势线,🖊绘制温度空间图,🖊温度空间图的全景图,🖊一维空间一维时间数据和霍夫莫勒图,🖊三维空间和一维时间文件及其地图绘制。🖊ChatGPT生成全球温度。
    2. 概率统计计算和绘制:🎯气象变量:🖊日降水量,🖊干旱期的概率分布函数和累计分布函数,二项分布和正态分布、🖊气候数据集估计平均值、方差、偏度和峰度,🖊降水量泊松分布。🎯估算:🖊给定日期地面气温异常平均值和置信区间,🖊计算气温异常假设检验,🖊计算气温统计学有效样本大小,🖊计算给定期间气温统计学上明显差异,🖊计算平均晴天、部分多云、多云天数,🖊将月降雨量数据拟合到伽玛分布,🖊使用累积分布的柯尔莫哥洛夫-斯米尔诺夫检验检查观测值和预期值拟合度,🖊对Kendall tau 检验既存同类数据关系,🖊曼-肯德尔趋势检验。
    3. 回归建模:🎯温度:🖊下降率和近似线性建模,单变量线性回归的假设和公式推导,斜率和相关性关系,置信区间预测,🖊鉴于地理坐标的温度下降率多线性回归建模,🖊全球温度的多线性回归非线性拟合。
    4. 矩阵数据:🎯数学线性计算:🖊奇异值分解海平面压力,🖊计算和可视化温度异常的时空因子的样本协方差矩阵,🖊计算和绘制赤道纬向带上温度异常的协方差矩阵特征值的曲线图,🖊德宾-沃森独立性测试样本,🖊指定特征值和标准误差条的碎石图。
    5. 时间序列:🎯二氧化碳数据:🖊基林曲线,🖊误差趋势和季节分解时间序列数据,🖊基林曲线的预测和观测数据的拟合,🖊最低气温观测数据及其趋势、季节周期和随机残差,🖊模拟自回归序列,🖊频谱分析,傅里叶变换。
    6. 机器学习:🎯气温和风:🖊每日天气数据的 K 均值聚类,散列图显示温度和风向关系,🖊聚类凸包数据分析,🖊随机森林回归城市每日臭氧层数据。
    7. 🎯气候和干旱指数:气候指数算法代码实现
  3. 运动学:
    1. 🎯可靠与不可靠性数据分析:🖊过滤、🖊汇总、🖊绘制,🖊专业运动员级成功可靠性。

    2. 🎯一般和多线性回归建模:🖊使用探索性数据分析绘制数据、🖊建模,拟合模型,运行模型获得汇总结果、🖊使用统计模型多线性建模和拟合模型,汇总模型结果。

    3. 🎯广义线性模型:🖊建模,绘制逻辑曲线、🖊从模型获取运动超出预期的完成百分比、🖊计算超出预期的完成百分比 vs 完成百分比的可靠性。

    4. 🎯泊松回归和体彩投注:🖊计算泊松概率分布,直方图观察比赛变化,🖊建模,从收支平衡计算投注方式,🖊计算泊松回归系数对模型结果的影响。

    5. 🎯主成分分析和聚类:🖊散列图分析运动员身体特征及运动特点、🖊降维(主成分分析)分析运动员成绩,🖊聚类算法:K均值法计算运动员和比赛结果。

    6. 机器学习:🎯视频计算人体运动学和动力学,大语言模型推理运动模式。

🍇Python分析网格降水量

import glob
import matplotlib.pyplot as plt
import urllib.request
import xarray as xr
for yr in range(2011,2015): url = f'https://downloads.precip.V1.0.{yr}.nc'savename = url.split('/')[-1]urllib.request.urlretrieve(url,savename)

让我们从简单开始:打开两年的数据并将它们连接到一个文件:

ds2011 = xr.open_dataset('precip.V1.0.2011.nc')
ds2012 = xr.open_dataset('precip.V1.0.2012.nc')
ds2011_2012 = xr.concat([ds2011,ds2012], dim='time')

现在,让我们尝试类似的操作,但通过更有效的方式(特别是文件数量超过两个):

ds2011_2014 = xr.open_mfdataset('precip.V1.0.*.nc', concat_dim='time', combine='nested')

现在让我们关注 2012 年并提取每月降水量总和并绘制其中一个月的简单绘图:

上面的图很简单,质量不高。现在,我们将为所有 12 个月制定一个更加个性化的情节,如下所示:

import calendar 
landmask = ds2012.precip.sum(dim='time')>0
fig = plt.figure(figsize=[12,8], facecolor='w')
plt.subplots_adjust(bottom=0.15, top=0.96, left=0.04, right=0.99, wspace=0.2, hspace=0.27) 
nrows = 3
ncols = 4
for i in range(1, 13):plt.subplot(nrows, ncols, i)dataplot = ds2012_mon.precip[i-1, :, :].where(landmask) p = plt.pcolormesh(ds2012_mon.lon, ds2012_mon.lat, dataplot,vmax = 400, vmin = 0, cmap = 'nipy_spectral_r',) plt.xlim([233,295])plt.ylim([25,50])plt.title(calendar.month_name[dataplot.month.values], fontsize = 13, fontweight = 'bold', color = 'b')plt.xticks(fontsize = 11)plt.yticks(fontsize = 11)if i % ncols == 1: plt.ylabel('Latitude', fontsize = 11, fontweight = 'bold')if i > ncols*(nrows-1): plt.xlabel('Longitude', fontsize = 11, fontweight = 'bold')cax = fig.add_axes([0.25, 0.06, 0.5, 0.018])
cb = plt.colorbar(cax=cax, orientation='horizontal', extend = 'max',)
cb.ax.tick_params(labelsize=11)
cb.set_label(label='Precipitation (mm)', color = 'k', size=14)plt.savefig('Fig_prec_mon_2012.png', format = 'png', dpi = 300)

现在假设我们想要提取特定边界的数据并查看该感兴趣区域内的平均条件。为简单起见,我们可以考虑一个矩形框。对于本例,让我们看一个几乎与此地类似的矩形框

top = 40
bottom = 37
left = 258
right = 265.4
ds_sel = ds2011_2014.isel(lon=(ds2011_2014.lon >= left) & (ds2011_2014.lon <= right),lat=(ds2011_2014.lat >= bottom) & (ds2011_2014.lat <= top),)
ds_sel_avg = ds_sel.mean(dim=['lat','lon'])

现在让我们绘制所选区域每年的累计日降水量。为了让事情变得更简单,让我们从记录中的所有闰年中删除 2 月 29 日。

ds_sel_avg_noleap = ds_sel_avg.sel(time=~((ds_sel_avg.time.dt.month == 2) & (ds_sel_avg.time.dt.day == 29)))

结果如下:

ds_sel_avg_noleap

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python和R概率统计算法建模评估气象和运动的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903879

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地