最前沿・量子退火建模方法(1) : subQUBO讲解和python实现

2024-04-14 14:36

本文主要是介绍最前沿・量子退火建模方法(1) : subQUBO讲解和python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

量子退火机在小规模问题上的效果得到了有效验证,但是由于物理量子比特的大规模制备以及噪声的影响,还没有办法再大规模的场景下应用。
这时候就需要我们思考,如何通过软件的方法怎么样把大的问题分解成小的问题,以便通过现在小规模的量子退火机解决。主要思路就是,同样的QUBO建模,怎么使用更少的量子比特。

下面的文章中,量子退火机伊辛机会混用。


一、subQUBO的创新点

先行的研究中,使用启发式方法将大型问题划分为较小的问题,并使用伊辛机进行求解,但划分后的问题的答案与原始大型问题的答案并不相同。达成协议的理论条件仍不清楚。早稻田大学的研究者开发出了subQUBO算法在保证分解后的小问题也能保证在原始大问题上的理论上做出了突破。

Atobe, Yuta, Masashi Tawada, and Nozomu Togawa. "Hybrid annealing method based on subQUBO model extraction with multiple solution instances." IEEE Transactions on Computers 71.10 (2021): 2606-2619.

subQUBO的创新点

  1. 首先研究将大规模组合优化问题划分为较小问题而不失去最优性的条件。该条件成立的话就证明,如果用伊辛机来解决一个满足条件的小问题,它就会和原来的大规模问题的答案相匹配。
  2. 还提出了一种新算法,成功地从大规模问题中提取出此类条件,将原始大规模问题缩小到伊辛机可以解决的问题规模,并迭代求解。所提出的算法通过基于理论支持将大规模问题分解为更小的问题来解决它,使得以比传统技术更高的精度解决原始大规模问题成为可能。
    在这里插入图片描述

二、subQUBO的详细思路

1. 怎么把大规模问题分解成小问题

1.1 逻辑前提:挑出错误后,回炉重造

  • 大规模组合优化问题的QUBO建模中,最终的答案由多个量子比特集合组成。
  • 如果你创建一个小规模问题,其中包括最终解的量子比特集合中的,所有不正确的量子比特集合
  • 并使用伊辛机解决该问题,则所有最终解的不正确的量子比特集合都将被纠正为正确的量子比特集合作为解。

1.2 具体实现:

实现方法: 可以创建一个大致包含所有不正确的量子比特集合的小问题,并使用伊辛机重复解决它。

  • 不正确的量子比特集合创建:
    – 我们使用传统的经典计算器来准备问题的多个候选答案。这些候选答案不一定是正确的,但在比较经典计算器求解得到的多个答案的量子比特集合的最终值。
    – 多个候选中匹配一致的就是正确的量子比特集合
    – 答案不匹配且不同的就是不正确的量子比特集合

  • 通过仅提取不正确的量子比特集合,并使用真实的伊辛机进行求解,最终可以获得整体的正确答案。

1.3 业界影响:

传统上,伊辛机很难解决大规模问题,因为可用位数受到硬件限制,但通过使用这种方法,可以使用伊辛机进行计算。因此,人们认为可以使用伊辛机(包括量子退火机)扩展现实世界组合优化问题的用例。此外,本研究尝试将经典计算机与伊辛机相结合来解决问题,这将大大扩展伊辛机的使用范围。

最新成果,参考以下新闻:
Quanmatic Co., Ltd.利用量子计算技术解决方案规模突破1亿比特

https://prtimes.jp/main/html/rd/p/000000015.000117406.html

三、subQUBO的python实现

  1. 导入库
import random
import itertools
import numpy as np
from dataclasses import dataclass
  1. 设置subQUBO所需参数
N_I = 20 # instance池
N_E = 10 # subQUBO的抽取次数
N_S = 10 # N_I个instance池中抽取的解的个数
sub_qubo_size = 5 # subQUBO的量子比特数
  1. QUBO建模

# 为了简单,使用TSP作为例子
NUM_CITY = 4
ALPHA = 1
np.random.seed(0)
num_spin = NUM_CITY ** 2distance_mtx = np.random.randint(1, 100, (NUM_CITY, NUM_CITY))
distance_mtx = np.tril(distance_mtx) + np.tril(distance_mtx).T - 2 * np.diag(distance_mtx.diagonal())# <<< Objective term >>>
qubo_obj = np.zeros((NUM_CITY**2, NUM_CITY**2), dtype=np.int32)
for t_u_v in itertools.product(range(NUM_CITY), repeat=3):t, u, v = t_u_v[0], t_u_v[1], t_u_v[2]idx_i = NUM_CITY * t + uif t < NUM_CITY - 1:idx_j = NUM_CITY * (t + 1) + velif t == NUM_CITY - 1:idx_j = vqubo_obj[idx_i, idx_j] += distance_mtx[u, v]
qubo_obj = np.triu(qubo_obj) + np.tril(qubo_obj).T - np.diag(np.diag(qubo_obj))# <<< Constraint term >>>
qubo_constraint = np.zeros((NUM_CITY**2, NUM_CITY**2), dtype=np.int32)
# Calculate constraint term1 : 1-hot of horizontal line
for t in range(NUM_CITY):for u in range(NUM_CITY - 1):for v in range(u + 1, NUM_CITY):qubo_constraint[NUM_CITY*t+u, NUM_CITY*t+v] += ALPHA * 2
# Linear term
for t_u in itertools.product(range(NUM_CITY), repeat=2):qubo_constraint[NUM_CITY*t_u[0]+t_u[1], NUM_CITY*t_u[0]+t_u[1]] += ALPHA * (-1)
const_constraint = ALPHA * NUM_CITY# Calculate constraint term2 : 1-hot of vertical line
# Quadratic term
for u in range(NUM_CITY):for t1 in range(NUM_CITY - 1):for t2 in range(t1+1, NUM_CITY):qubo_constraint[NUM_CITY*t1+u, NUM_CITY*t2+u] += ALPHA * 2
# Linear term
for u_t in itertools.product(range(NUM_CITY), repeat=2):qubo_constraint[NUM_CITY*u_t[1]+u_t[0], NUM_CITY*u_t[1]+u_t[0]] += ALPHA * (-1)
const_constraint += ALPHA * NUM_CITY
  1. 创建instance池

@dataclass
class Solution():"""Solution information.Attributes:x (np.ndarray): n-sized solution composed of binary variablesenergy_all (float): energy value obtained from QUBO-matrix of all termenergy_obj (float): energy value obtained from QUBO-matrix of objective termenergy_constraint (float): energy value obtained from QUBO-matrix of constraint termconstraint (bool): flag whether the solution satisfies the given constraint"""x: np.ndarrayenergy_all: float = 0energy_obj: float = 0energy_constraint: float = 0constraint: bool = True@classmethoddef energy(cls, qubo:np.ndarray, x: np.ndarray, const=0) -> float:"""Calculate the enrgy from the QUBO-matrix & solution xArgs:qubo (np.ndarray): n-by-n QUBO-matrixx (np.ndarray): n-sized solution composed of binary variablesconst (int, optional): _description_. Defaults to 0.Returns:float: Energy value."""return float(np.dot(np.dot(x, qubo), x) + const)@classmethoddef check_constraint(cls, qubo: np.ndarray, x: np.ndarray, const=0) -> bool:"""Check whether the solution satisfies the constraints.Args:qubo (np.ndarray): QUBO-model of the constraint term.x (np.ndarray): solution that you want to check.const (int, optional): constant of the constraint term. Defaults to 0.Returns:bool: Return True if the solution satisfy.Return False otherwise."""return True if cls.energy(qubo, x, const) == 0 else False
  1. subQUBO Hybrid Annealing Algorithm
# https://ieeexplore.ieee.org/document/9664360# <<< Line 2-4 >>>
# Initialize the Instance Pool
pool = []
for i in range(N_I):# ====================# 实验时改动此参数x = np.random.randint(0, 2, num_spin) # 生成随机解# ====================energy_obj = Solution.energy(qubo_obj, x)energy_constraint = Solution.energy(qubo=qubo_constraint, x=x, const=const_constraint)pool.append(Solution(x = x,energy_all = energy_obj + energy_constraint,energy_obj = energy_obj,energy_constraint = energy_constraint,constraint = Solution.check_constraint(qubo=qubo_constraint, x=x, const=const_constraint)))
ascending_order_idx = np.argsort(np.array(list(map(lambda sol: sol.energy_all, pool))))
pool = [pool[i] for i in ascending_order_idx]# <<< Line 5 >>>
# Find the best solution
ascending_order_idx = np.argsort(np.array(list(map(lambda sol: sol.energy_all, pool))))
x_best = pool[ascending_order_idx[0]]for _ in range(1): # <<< Line 6 >>># <<< Line 7-8 >>># Obtain a quasi-ground-state solution for every N_I solution instance by a classical QUBO solverfor solution_i in pool:# ====================# 实验时改动此参数x = np.random.randint(0, 2, num_spin) # 生成随机解# ====================# Update the solution infosolution_i.x = xenergy_obj = solution_i.energy(qubo_obj, x)energy_constraint = solution_i.energy(qubo_constraint, x, const_constraint)solution_i.energy_all = energy_obj + energy_constraintsolution_i.energy_obj = energy_objsolution_i.energy_constraint = energy_constraintsolution_i.constraint = solution_i.check_constraint(qubo=qubo_constraint, x=x, const=const_constraint)for i in range(N_E): # <<< Line 9 >>># <<< Line 10 >>># Select N_S solution instance randomly from the pooln_s_pool = random.sample(pool, N_S)# <<< Line 11-14 >>># Calculate variance of each spin x_i in N_S instance poolSolution.check_constraint(qubo_constraint, x, const_constraint)vars_of_x = np.array([sum(n_s_pool[k].x[j] for k in range(N_S)) - N_S/2 for j in range(num_spin)])# <<< Line 15 >>># Select a solution randomly from N_S solution instance pool as a tentative solutionsolution_tmp = random.choice(n_s_pool)# Extract a subQUBOextracted_spin_idx = np.argsort(vars_of_x)[:sub_qubo_size]non_extracted_spin_idx = np.argsort(vars_of_x)[sub_qubo_size:]subqubo_obj = np.array([[qubo_obj[j, k] for k in extracted_spin_idx] for j in extracted_spin_idx])subqubo_constraint = np.array([[qubo_constraint[j, k] for k in extracted_spin_idx] for j in extracted_spin_idx])for idx_i in range(sub_qubo_size):subqubo_obj[idx_i, idx_i] += sum(qubo_obj[idx_i, idx_j] * solution_tmp.x[idx_j] for idx_j in non_extracted_spin_idx)subqubo_constraint[idx_i, idx_i] += sum(qubo_constraint[idx_i, idx_j] * solution_tmp.x[idx_j] for idx_j in non_extracted_spin_idx)# <<< Line 16 >>># Optimize the subQUBO using an Ising machine# ====================# 实验时改动此参数x_sub = np.random.randint(0, 2, sub_qubo_size) # 生成随机解# ====================# Combine the quasi-ground-state solution from the subQUBO with the tentative solution X_t(solution_tmp)for idx, val in enumerate(extracted_spin_idx):solution_tmp.x[idx] = x_sub[idx]# <<< Line 17 >>># Add the solution into the poolpool.append(solution_tmp)# <<< Line 18 >>># Find the best soliutionascending_order_idx = np.argsort(np.array(list(map(lambda sol: sol.energy_all, pool))))x_best = pool[ascending_order_idx[0]]# <<< Line 19 >>># Arrange the N_I instance poolsorted_pool = [pool[i] for i in ascending_order_idx]pool = sorted_pool[:N_I]pool, x_best

总结

subQUBO思路很简单,希望大家可以看着代码,理解如果实现。这个算法已经被早稻田大学申请专利了。

这篇关于最前沿・量子退火建模方法(1) : subQUBO讲解和python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903243

相关文章

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

更改linux系统的默认Python版本方式

《更改linux系统的默认Python版本方式》通过删除原Python软链接并创建指向python3.6的新链接,可切换系统默认Python版本,需注意版本冲突、环境混乱及维护问题,建议使用pyenv... 目录更改系统的默认python版本软链接软链接的特点创建软链接的命令使用场景注意事项总结更改系统的默

SQLServer中生成雪花ID(Snowflake ID)的实现方法

《SQLServer中生成雪花ID(SnowflakeID)的实现方法》:本文主要介绍在SQLServer中生成雪花ID(SnowflakeID)的实现方法,文中通过示例代码介绍的非常详细,... 目录前言认识雪花ID雪花ID的核心特点雪花ID的结构(64位)雪花ID的优势雪花ID的局限性雪花ID的应用场景

Linux升级或者切换python版本实现方式

《Linux升级或者切换python版本实现方式》本文介绍在Ubuntu/Debian系统升级Python至3.11或更高版本的方法,通过查看版本列表并选择新版本进行全局修改,需注意自动与手动模式的选... 目录升级系统python版本 (适用于全局修改)对于Ubuntu/Debian系统安装后,验证Pyt

Python实现开根号的五种方式

《Python实现开根号的五种方式》在日常数据处理、数学计算甚至算法题中,开根号是一个高频操作,但你知道吗?Python中实现开根号的方式远不止一种!本文总结了5种常用方法,感兴趣的小伙伴跟着小编一起... 目录一、为什么需要多种开根号方式?二、5种开根号方式详解方法1:数学库 math.sqrt() ——

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

nginx配置错误日志的实现步骤

《nginx配置错误日志的实现步骤》配置nginx代理过程中,如果出现错误,需要看日志,可以把nginx日志配置出来,以便快速定位日志问题,下面就来介绍一下nginx配置错误日志的实现步骤,感兴趣的可... 目录前言nginx配置错误日志总结前言在配置nginx代理过程中,如果出现错误,需要看日志,可以把

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC

MySQL连表查询之笛卡尔积查询的详细过程讲解

《MySQL连表查询之笛卡尔积查询的详细过程讲解》在使用MySQL或任何关系型数据库进行多表查询时,如果连接条件设置不当,就可能发生所谓的笛卡尔积现象,:本文主要介绍MySQL连表查询之笛卡尔积查... 目录一、笛卡尔积的数学本质二、mysql中的实现机制1. 显式语法2. 隐式语法3. 执行原理(以Nes