r3live 使用前提 雷达-相机外参标定 livox_camera_lidar_calibration

本文主要是介绍r3live 使用前提 雷达-相机外参标定 livox_camera_lidar_calibration,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标定的是相机到雷达的,R3live下面配置的雷达到相机的,所以要把得到外参旋转矩阵求逆,再填入,平移矩阵则取负
港科大livox_camera_calib虽然操作方便,但是使用mid360雷达会有视角问题(投影三维点到相机),尝试了很多场景,标定效果都不理想(推荐场景是楼梯间),看来港大的更适合avia之类窄角度的雷达。livox_camera_lidar_calibration标定效果还不错,但是注意不能使用官方版本,里面有很多坑。ubuntu20下使用不是很友好,小bug比较多,真正意义的全手动标定。坑到怀疑人生

推荐另外一个在线标定方式lidar2cam_calibration

改进版livox_camera_lidar_calibration 使用注意事项
1、获取角点坐标通过点击鼠标左键,通过鼠标右键结束,程序会自动跳转到第二张图片继续重复上述步骤直到获取角点结束。
2、官方教程里用的图片格式是bmp,实测png格式也可以
(png格式转bmp格式 使用conver工具 )

sudo apt install imagemagick
conver 0.png 0.bmp

3、获取点云角点坐标通过shift+鼠标左键拾取,按 q 键跳转到下一个pcd
4、图片和点云bag命名规则从0开始 0.bmp 0.png
5、每次迭代运算的cost,外参结果以齐次矩阵的格式保存 data/parameters/extrinsic.txt下,结果求逆解算修改到r3live
6、计算前在getExt1.launch文件中配置好外参初值。初值对标定结果影响很大
在这里插入图片描述
可以从终端看到
初始的cost 是 3.496e4,优化后为5.749e1
如果标定效果不好的话,就使用 getExt2节点,getExt1节点只优化外参,而getExt2节点在计算的时候会将一开始计算的内参作为初值和外参一起优化。输入指令程序会得到一个新的内参和外参,并用新的参数来进行重投影验证。一般使用getExt1节点即可,如果在外参初值验证过,并且异常值已经剔除后,优化还是有较大的残差,那么可以使用getExt2试一试。使用的前提需要保证标定数据量较大,并且要充分验证结果。
livox_camera_lidar_calibration_modified
求解外参时进行两次优化,第二次优化时不将重投影误差大于阈值的对应点对加入优化方程
opencv 鼠标事件
CV_EVENT_MOUSEMOVE :鼠标移动
CV_EVENT_LBUTTONDOWN : 鼠标左键按下
CV_EVENT_RBUTTONDOWN : 鼠标右键按下
CV_EVENT_MBUTTONDOWN : 鼠标中键按下
CV_EVENT_LBUTTONUP : 鼠标左键放开
CV_EVENT_RBUTTONUP : 右键放开
CV_EVENT_MBUTTONUP : 中键放开
CV_EVENT_LBUTTONDBLCLK : 左键双击
CV_EVENT_RBUTTONDBLCLK : 右键双击
CV_EVENT_MBUTTONDBLCLK : 中键双击
CV_EVENT_MOUSEWHEEL : 鼠标向前(+)或向后(-)滑动
CV_EVENT_MOUSEHWHEEL : 鼠标向右(+)或向左(-)滑动
查看图像像素坐标的软件

sudo apt-get install mtpaint

这篇关于r3live 使用前提 雷达-相机外参标定 livox_camera_lidar_calibration的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/902669

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma