独家 | 初学者的问题:在神经网络中应使用多少隐藏层/神经元?(附实例)

本文主要是介绍独家 | 初学者的问题:在神经网络中应使用多少隐藏层/神经元?(附实例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=png

作者:Ahmed Gad

翻译:蒋雨畅

校对:李海明

本文约2400字,建议阅读8分钟

本文将通过两个简单的例子,讲解确定所需隐藏层和神经元数量的方法,帮助初学者构建神经网络。


人工神经网络(ANNs)初学者可能会问这样的问题:


  • 该用多少个隐藏层?

  • 每个隐藏层中有多少个隐藏的神经元?

  • 使用隐藏层/神经元的目的是什么?

  • 增加隐藏层/神经元的数量总能带来更好的结果吗?


很高兴我们可以回答这些问题。首先要清楚,如果要解决的问题很复杂,回答这些问题可能会过于复杂。到本文结束时,您至少可以了解这些问题的答案,而且能够在简单的例子上进行测试。

 

ANN的灵感来自生物神经网络。在计算机科学中,它被简化表示为一组层级。而层级分为三类,即输入,隐藏和输出类。

 

确定输入和输出层的数量及其神经元的数量是最容易的部分。每一神经网络都有一个输入和一个输出层。输入层中的神经元数量等于正在处理的数据中输入变量的数量。输出层中的神经元数量等于与每个输入相关联的输出数量。但挑战在于确定隐藏层及其神经元的数量。

 

以下是一些指导,可以帮助了解分类问题中每个隐藏层的隐藏层数和神经元数:


  • 根据数据绘制预期的决策边界,从而将各个类别分开。

  • 将决策边界表示为一组线。注意这些线的组合必须服从于决策边界。

  • 所选的线的数量表示第一隐藏层中隐藏神经元的数量。

  • 如要连接由前一层所创建的连线,则需添加一个新的隐藏层。注意,每次添加一个新的隐藏层时,都需要与上一个隐藏层创建连接。

  • 每个新隐藏层中隐藏神经元的数量等于要建立的连接数。

 

 为便于理解,请看以下实例:


实例一

 
让我们从一个两个类的分类问题的简单示例开始。如图1所示,每个示例都有两个输入和一个表示类标签的输出。它与XOR问题非常相似。


640?wx_fmt=png

图1
 

第一个问题是是否需要隐藏层。确定是否需要隐藏层的规则如下:

 

在人工神经网络中,当且仅当数据必须非线性分离时,才需要隐藏层。

 

如图2所示,似乎这些类必须是非线性分离的。一条单线不能分离数据。因此,我们必须使用隐藏层以获得最佳决策边界。在这种情况下,我们可能仍然不使用隐藏层,但这会影响分类准确性。因此,最好使用隐藏层。

 

知道需要隐藏层之后,有两个重要问题需要回答,即:


  • 所需的隐藏层数是多少?

  • 每个隐藏层的隐藏神经元数量是多少?

 

按照前面的过程,第一步是绘制分割两个类的决策边界。如图2所示,有多个可能的决策边界正确地分割数据。我们将进一步讨论图2(a)中的那个。


640?wx_fmt=png

图2

 

接下来是通过一组线进行表达决策边界。

 

使用一组线来表示决策边界的事实依据是:任何ANN都是使用单层感知器作为构建块构建的。单层感知器是一个线性分类器,它使用根据以下等式创建的线来分隔不同类:

 

y = w_1 * x_1 + w_2 * x_2 +⋯+ w_i * x_i + b

 

其中 x_i 是 输入,w_i 是其权重,b 是偏差,y 是输出。因为添加的每个隐藏神经元都会增加权重数量,且使用更多的隐藏神经元会增加复杂性,因此建议使用最少数量的隐藏神经元来完成任务。

 

回到我们的例子,说ANN是使用多个感知器网络构建的,就像说网络是使用多条线路构建的。

 

在这个例子中,决策边界被一组线代替。线从边界曲线改变方向的点开始。在这一点上,放置两条线,每条线在不同的方向上。

 

如图3所示,因为边界曲线只有一个点通过灰色圆圈改变方向,所以只需要两条线。换句话说,这里有两个单层感知器网络,每个感知器产生一条线。


640?wx_fmt=png

图3
 

决策边界只需要两条线即可表示,这意味着第一个隐藏层将有两个隐藏的神经元。

 

到目前为止,我们有一个隐藏层,其包括有两个隐藏的神经元,每个隐藏的神经元可以被视为线性分类器,如图3中的线所示。这里将有两类输出,其中一类来自每一个分类器(即隐藏的神经元)。然而我们希望构建一个只能输出类标的分类器。因此,两个隐藏神经元的输出将合并为一个输出。换句话说,这两条线将由另一个神经元连接。结果如图4所示。

 

幸运的是,我们不需要添加另一个带有单个神经元的隐藏层来完成这项工作。输出层神经元将完成任务。其可将先前生成的两条线进行融合,使网络最终只有一个输出。


640?wx_fmt=png

图4


知道隐藏层及其神经元的数量后,网络架构现已完成,如图5所示。


640?wx_fmt=png

图5
 

实例二

 
另一个分类的例子如图6所示。与之前的例子类似,有两个分类,其中每个样本有两个输入和一个输出。区别在于决策边界。此示例的边界比前一个示例更复杂。


640?wx_fmt=png

图6
 

根据最开始的指示,第一步是绘制决策边界。前述中使用的决策边界如图7(a)所示。

 

下一步是将决策边界分成一组线,每条线都可构建为像ANN感知器那样的模型。在绘制线之前,应该标记边界变化方向的点,如图7(b)所示。


640?wx_fmt=jpeg

图7
 

问题是需要多少条线?顶点和底点中的每一个将具有与它们相关联的两条线,总共4条线。中间点有两条线从其他点共享。要创建的线如图8所示。

 

因为第一个隐藏层将具有等于线数的隐藏层神经元,所以第一个隐藏层将具有4个神经元。换句话说,有4个分类器,每个分类器由单层感知器创建。目前,网络将生成4个输出,每个分类器一个。接下来是将这些分类器连接在一起,以使网络仅生成单个输出。换句话说,线条将通过其他隐藏层连接在一起来生成单独一条曲线。


640?wx_fmt=png

图8
 

模型设计者可以选择网络布局。一种可行的网络架构是构建具有两个隐藏神经元的第二隐藏层。第一个隐藏的神经元将连接前两条线,最后一个隐藏的神经元将连接最后两条线。第二个隐藏层的结果如图9所示。


640?wx_fmt=png

图9

到目前为止,这里有两条分开的曲线。因此,网络有两个输出。接下来是将这些曲线连接在一起从整个网络中获得单个输出。在这种情况下,输出层神经元可用于进行最终连接而非添加新的隐藏层。最终结果如图10所示。


640?wx_fmt=png

图10


网络设计完成后,完整的网络架构如图11所示。


640?wx_fmt=png

图11
 

更多详细信息:


深度学习简介+使用人工神经网络求解XOR


  • SlideShare:

https://www.slideshare.net/AhmedGadFCIT/brief-introduction-to-deep-learning-solving-xor-using-anns

  • YouTube:

https://www.youtube.com/watch?v = EjWDFt-2n9k

 

作者简介:


Ahmed Gad于2015年7月在埃及Menoufia大学计算机与信息学院(FCI)获得了信息技术优秀学位的理学士学位。由于他在学院里排名第一,他在2015年被推荐为一所埃及研究机构的教学助理,然后于2016年在学院里担任教学助理和研究员。他目前的研究兴趣包括深度学习,机器学习,人工智能,数字信号处理和计算机视觉。


原文标题: 

Beginners Ask “How Many Hidden Layers/Neurons to Use in Artificial Neural Networks?

原文链接:

https://www.kdnuggets.com/2018/07/beginners-ask-how-many-hidden-layers-neurons-neural-networks.html 


译者简介

640?wx_fmt=png

蒋雨畅,香港理工大学大三在读,主修地理信息,辅修计算机科学,目前在研究学习通过数据科学等方法探索城市与人类活动的关系。希望能认识更多对数据科学感兴趣的朋友,了解更多前沿知识,开拓自己的眼界。

翻译组招募信息

工作内容:需要一颗细致的心,将选取好的外文文章翻译成流畅的中文。如果你是数据科学/统计学/计算机类的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友欢迎加入翻译小组。

你能得到:定期的翻译培训提高志愿者的翻译水平,提高对于数据科学前沿的认知,海外的朋友可以和国内技术应用发展保持联系,THU数据派产学研的背景为志愿者带来好的发展机遇。

其他福利:来自于名企的数据科学工作者,北大清华以及海外等名校学生他们都将成为你在翻译小组的伙伴。


点击文末“阅读原文”加入数据派团队~

转载须知

如需转载,请在开篇显著位置注明作者和出处(转自:数据派ID:datapi),并在文章结尾放置数据派醒目二维码。有原创标识文章,请发送【文章名称-待授权公众号名称及ID】至联系邮箱,申请白名单授权并按要求编辑。

发布后请将链接反馈至联系邮箱(见下方)。未经许可的转载以及改编者,我们将依法追究其法律责任。


640?wx_fmt=png640?wx_fmt=jpeg

点击“阅读原文”拥抱组织

这篇关于独家 | 初学者的问题:在神经网络中应使用多少隐藏层/神经元?(附实例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901661

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删