面部识别必看!5篇顶级论文了解如何实现人脸反欺诈、跨姿势识别等(附链接)...

本文主要是介绍面部识别必看!5篇顶级论文了解如何实现人脸反欺诈、跨姿势识别等(附链接)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=png

来源:新智元

本文约 1800字 ,建议阅读 5分钟
本文筛选了5篇非常重量级的有关人脸识别的机器学习论文,并提炼出论文最关键的信息。

640?wx_fmt=jpeg

[ 导读 ]面部识别是计算机视觉中最大的研究领域之一。许多公司都投资于面部识别技术的研究和开发。

面部识别是计算机视觉中最大的研究领域之一。现在,我们可以使用面部识别来解锁手机,在安全门上验证身份,并在某些国家/地区进行刷脸支付。许多公司都投资于面部识别技术的研究和开发,本文将重点介绍其中的一些研究,并介绍五篇有关人脸识别的机器学习论文。

1. 大规模多模式人脸反欺诈的数据集和基准

640?wx_fmt=png

随着大量实际应用,人脸识别技术变得越来越重要。从智能手机解锁到人脸验证付款方式,人脸识别可以在许多方面提高安全性和监视能力。

640?wx_fmt=png

但是,该技术也带来一些风险。可以使用多种面部欺诈方法来欺诈这些系统。因此,面部防欺诈对于防止安全漏洞至关重要。

为了支持面部反欺诈研究,本文的作者介绍了一种名为CASIASURF的多模式面部反欺诈数据集。截止本文撰写之日,它是最大的面部反欺诈开放数据集。

具体来说,该数据集包括以RGB,深度和IR方式从1000个主题中拍摄的21000个视频。除了数据集外,作者还提出了一种新颖的多模式融合模型,作为面部反欺诈的基准。

发布/最近更新– 2019年4月1日

作者和投稿人–Shifeng Zhang (NLPR, CASIA, UCAS, China) , Xiaobo Wang (JD AI Research), Ajian Liu (MUST, Macau, China), Chenxu Zhao (JD AI Research), Jun Wan (NLPR, CASIA, UCAS, China), Sergio Escalera (University of Barcelona), Hailin Shi (JD AI Research), Zezheng Wang (JD Finance), Stan Z. Li (NLPR, CASIA, UCAS, China).。

https://arxiv.org/pdf/1812.00408v3.pdf

2. FaceNet:人脸识别和聚类的统一嵌入

640?wx_fmt=png

在本文中,作者提出了一种称为FaceNet的面部识别系统。 

该系统使用深度卷积神经网络优化嵌入,而不是使用中间瓶颈层。作者指出,该方法最重要的方面是系统的端到端学习。

该团队在CPU集群上训练了卷积神经网络1000到2000小时。然后,他们在四个数据集上评估了他们的方法。 

值得注意的是,FaceNet在著名的野外标记人脸(LFW)数据集上的准确性达到99.63%,在Youtube Faces数据库上达到95.12%。

发布/最近更新– 2015年6月17日

作者和撰稿人– Florian Schroff, Dmitry Kalenichenko, and James Philbin, from Google Inc.

https://arxiv.org/pdf/1503.03832v3.pdf

3. 概率脸部嵌入

640?wx_fmt=png
用于面部识别的当前嵌入方法,能够在受控设置中实现高性能。这些方法通过拍摄一张脸部图像并将有关该脸部的数据存储在潜在的语义空间中而起作用。

但是,当在完全不受控制的设置下进行测试时,当前方法无法正常执行。这是由于在图像中缺少面部特征或模棱两可的情况。这种情况的一个例子是监视视频中的人脸识别,其中视频的质量可能很低。

为了帮助解决这个问题,本文的作者提出了概率面孔嵌入(PFE)。作者提出了一种将现有确定性嵌入转换为PFE的方法。最重要的是,作者指出,这种方法有效地提高了人脸识别模型的性能。

发布/最新更新– 2019年8月7日

作者和贡献者–Yichun Shi and Anil K. Jain, from Michigan State University.

https://arxiv.org/pdf/1904.09658.pdf

4. 人脸识别的魔鬼在噪音中

640?wx_fmt=png
商汤研究院,加利福尼亚大学圣地亚哥分校和南洋理工大学的研究人员研究了大规模面部图像数据集中的噪声影响。

由于它们的规模和成本效益,许多大型数据集都容易产生标签噪声。本文旨在提供有关标签噪声源及其在人脸识别模型中的后果的知识。此外,他们的目标是建立并发布一个名为IMDb-Face的干净人脸识别数据集。

该研究的两个主要目标是发现噪声对最终性能的影响,并确定注释脸部身份的最佳策略。为此,该团队手动清理了两个流行的张开面部图像数据集,MegaFace和MS-Celeb-1M。他们的实验表明,仅在其清理的MegaFace数据集的32%和MS-Celeb-1M清理的数据集的20%上训练的模型与在整个原始未清理的数据集上训练的模型具有相似的性能。

发布/最新更新– 2018年7月31日

作者和贡献者–Fei Wang (SenseTime), Liren Chen (University of California San Diego), Cheng Li (SenseTime), Shiyao Huang (SenseTime), Yanjie Chen (SenseTime), Chen Qian (SenseTime), and Chen Change Loy (Nanyang Technological University). 

https://arxiv.org/pdf/1807.11649v1.pdf

5. VGGFace2:用于识别跨姿势和年龄的人脸的数据集

640?wx_fmt=png

关于深度卷积神经网络的面部识别已经进行了许多研究。 反过来,已经创建了许多大规模的面部图像数据集来训练那些模型。 但是,本文的作者指出,先前发布的数据集并未包含有关面部姿势和年龄变化的大量数据。

在本文中,牛津大学的研究人员介绍了VGGFace2数据集。 该数据集包含年龄,种族,照明和姿势变化范围广泛的图像。 数据集总共包含331万张图像和9,131个对象。

发布/最新更新– 2018年5月13日

作者和撰稿人–Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman, from the Visual Geometry Group at the University of Oxford. 

https://arxiv.org/pdf/1710.08092v2.pdf

希望上面有关人脸识别的机器学习论文有助于加深您对该领域工作的了解。

编辑:于腾凯

校对:龚力

640?wx_fmt=jpeg

这篇关于面部识别必看!5篇顶级论文了解如何实现人脸反欺诈、跨姿势识别等(附链接)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901471

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S