柱状图、堆叠柱状图、瀑布图有什么区别?怎样用Python绘制?(附代码)

2024-04-13 22:48

本文主要是介绍柱状图、堆叠柱状图、瀑布图有什么区别?怎样用Python绘制?(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


来源:大数据DT(ID:hzdashuju)

作者:屈希峰,资深Python工程师,知乎多个专栏作者

本文约8000字,建议阅读20分钟

柱状图是当前应用最广泛的图表之一,你几乎每天都可以在电子产品上看到它。它有哪些分类?可以展示哪些数据关系?怎样用Python绘制?本文带你逐一了解。

01 概述

柱状图(Histogram)是一种以长方形的长度为变量的表达图形的统计报告图,由一系列高度不等的纵向条纹表示数据分布的情况,用来比较两个或两个以上的价值(不同时间或者不同条件),只有一个变量,通常用于较小的数据集分析。

柱状图也可横向排列,或用多维方式表达。其主要用于数据统计与分析,早期主要用于数学统计学科中,用柱状图表示数码相机的曝光值,到现代使用已经比较广泛,比如现代的电子产品和一些软件的分析测试,如电脑、数码相机的显示器和Photoshop上都能看到相应的柱状图。

1. 基础柱状图

基础柱状图经常用来对比数值的大小,使用范围非常广泛,例如科比在不同赛季的得分、不同游戏App下载量、不同时期手机端综合搜索用户规模等,图2-33显示不同种类水果的销量。

▲图2-33 基本柱状图

需要注意的是,分类太多不适合使用竖向柱状图,如图2-34所示。

▲图2-34 竖向柱状图

此时,需要用到横向柱状图,如图2-35所示。

▲图2-35 横向柱状图

2. 分组柱状图

分组柱状图,又叫聚合柱状图。当使用者需要在同一个轴上显示各个分类下不同的分组时,需要用到分组柱状图。

跟柱状图类似,使用柱子的高度来映射和对比数据值。每个分组中的柱子使用不同颜色或者相同颜色不同透明的方式区别各个分类,各个分组之间需要保持间隔。

分组柱状图经常用于不同组间数据的比较,这些组都包含了相同分类的数据。例如,展示改革开放以来城镇与农村人口的变化,不同游戏公司的休闲、益智、格斗类App的下载量对比等。图2-36对比了2015—2017年间不同水果的销量。

▲图2-36 分组柱状图

3. 堆叠柱状图

与并排显示分类的分组柱状图不同,堆叠柱状图将每个柱子进行分割以显示相同类型下各个数据的大小情况。它可以形象地展示一个大分类包含的每个小分类的数据,以及各个小分类的占比,显示的是单个项目与整体之间的关系。我们将堆叠柱状图分为两种类型:

  • 一般的堆叠柱状图:每一根柱子上的值分别代表不同的数据大小,各层的数据总和代表整根柱子的高度。非常适用于比较每个分组的数据总量。

  • 百分比的堆叠柱状图:柱子的各个层代表的是该类别数据占该分组总体数据的百分比。

堆叠柱状图的一个缺点是当柱子上的堆叠太多时会导致数据很难区分对比,同时很难对比不同分类下相同维度的数据,因为它们不是按照同一基准线对齐的。

图2-37是显示2015—2017年间不同水果的累计数量。

▲图2-37 堆叠柱状图

4. 双向柱状图

双向柱状图,又名正负条形图,使用正向和反向的柱子显示类别之间的数值比较。其中分类轴表示需要对比的分类维度,连续轴代表相应的数值,分为两种情况,一种是正向刻度值与反向刻度值完全对称,另一种是正向刻度值与反向刻度值反向对称,即互为相反数。

图2-38是显示2015—2017年间不同水果的进出口数量。

▲图2-38 双向柱状图

5. 瀑布图

瀑布图是由麦肯锡顾问公司所独创的图表类型,因为形似瀑布流水而称之为瀑布图(Waterfall Plot)。此种图表采用绝对值与相对值结合的方式,适用于表达数个特定数值之间的数量变化关系。图2-39显示历年短跑冠军的时间跨度,由此可以看出人类体能极限越来越高了。

▲图2-39 瀑布图

接下来,我们看看如何用Bokeh依次实现这些柱状图。

02 实例

柱状图代码示例如下所示。

  • 代码示例 2-27

1p = figure(plot_width=400, plot_height=400)2p.vbar(x=[1, 2, 3], width=0.5, bottom=0,3       top=[1.2, 2.5, 3.7], color="red")   # 垂直柱状图4show(p)  # 显示

运行结果如图2-40所示。

▲图2-40 代码示例2-27运行结果

代码示例2-27第2行采用vbar()方法实现垂直柱状图,该方法具体的参数说明如下。

p.vbar(x, width, top, bottom=0, **kwargs)参数说明。

  • x (:class:`~bokeh.core.properties.NumberSpec` ) : 柱中心x轴坐标

  • width(:class:`~bokeh.core.properties.NumberSpec` ) : 柱宽

  • top (:class:`~bokeh.core.properties.NumberSpec` ) : 柱顶部y轴坐标

  • bottom(:class:`~bokeh.core.properties.NumberSpec` ) : 柱底部y轴坐标

  • 代码示例 2-28

1p = figure(plot_width=400, plot_height=400)  
2p.hbar(y=[1, 2, 3], height=0.5, left=0,  
3       right=[1.2, 2.5, 3.7], color="navy")  # 水平柱状图  
4show(p)  # 显示

运行结果如图2-41所示。

▲图2-41 代码示例2-28运行结果

代码示例2-28第2行采用hbar()方法实现横向柱状图,该方法具体的参数说明如下。

p.hbar(y, height, right, left=0, **kwargs)参数说明。

  • y(:class:`~bokeh.core.properties.NumberSpec` ) : 柱中心y轴坐标

  • height(:class:`~bokeh.core.properties.NumberSpec` ) :柱的高度(宽度)

  • right(:class:`~bokeh.core.properties.NumberSpec` ) :柱右侧边界x轴坐标

  • left (:class:`~bokeh.core.properties.NumberSpec` ) :柱左侧边界x轴坐标

  • 代码示例 2-29

1from bokeh.models import ColumnDataSource  2from bokeh.palettes import Spectral6  3import pandas as pd  4df=pd.read_csv('data/visualization-20190505.csv')  5p = figure(x_range=df['Visualization_tools'],title="2019年5月常见可视化工具源码GitHub标星数量")  6p.vbar(x=df['Visualization_tools'], top=df['Star'] , width=0.8, color=Spectral6)7p.xgrid.grid_line_color = None  8p.y_range.start = 0  9show(p)

运行结果如图2-42所示。

▲图2-42 代码示例2-29运行结果

代码示例2-29第6行采用vbar()方法展示集中可视化开源工具在GitHub上的Stars数,可以看出Bokeh已经超过了Matplotlib。

  • 代码示例 2-30

 1# 数据  2fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']3counts = [5, 3, 4, 2, 4, 6]  4# 画布  5p = figure(x_range=fruits, plot_height=350, title="Fruit Counts",  6#            toolbar_location=None,  7#            tools=""  8         )  9# 柱状图  
10p.vbar(x=fruits, top=counts, width=0.9)  
11# 坐标轴设置  
12p.xgrid.grid_line_color = None  
13p.y_range.start = 0  
14# 显示  
15show(p)  

运行结果如图2-43所示。

▲图2-43 代码示例2-30运行结果

代码示例2-30第10行采用vbar()方法展示了几种水果的销量。

  • 代码示例 2-31

1# 数据   2fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'] 3counts = [5, 3, 4, 2, 4, 6]   4# 排序   5sorted_fruits = sorted(fruits, key=lambda x: counts[fruits.index(x)])   6# 画布   7p = figure(x_range=sorted_fruits, plot_height=350, title="Fruit Counts",   8#            toolbar_location=None, tools=""   9          )  10# 绘图  11p.vbar(x=fruits, top=counts, width=0.9)  12# 其他  13p.xgrid.grid_line_color = None  14p.y_range.start = 0  15# 显示  16show(p)

运行结果如图2-44所示。

▲图2-44 代码示例2-31运行结果

代码示例2-31第5行先用sorted()方法对原始数据进行排序;然后在第11行采用vbar()方法展示了几种水果的销量。

  • 代码示例 2-32

1from bokeh.models import ColumnDataSource   2from bokeh.palettes import Spectral6   3from bokeh.transform import factor_cmap   4# 数据   5fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'] 6counts = [5, 3, 4, 2, 4, 6]   7source = ColumnDataSource(data=dict(fruits=fruits, counts=counts))   8# 画布   9p = figure(x_range=fruits, plot_height=350, toolbar_location=None, title="Fruit Counts")  10# 绘图,分组颜色映射  11p.vbar(x='fruits', top='counts', width=0.9, source=source, legend="fruits",  12       line_color='white', fill_color=factor_cmap('fruits', palette=Spectral6, factors=fruits))  13# 坐标轴、图例设置  14p.xgrid.grid_line_color = None  15p.y_range.start = 0  16p.y_range.end = 9  17p.legend.orientation = "horizontal"  18p.legend.location = "top_center"  19show(p)

运行结果如图2-45所示。

▲图2-45 代码示例2-32运行结果

代码示例2-32第11行采用vbar()方法展示了几种水果的销量,其中line_color、fill_color分别为柱的轮廓线颜色和填充颜色,factor_cmap采用数据分类进行颜色映射。在代码实例2-27中,也可以通过color直接定义颜色列表。

  • 代码示例 2-33

1from bokeh.models import ColumnDataSource  2from bokeh.palettes import Spectral6  # ['#3288bd', '#99d594', '#e6f598', '#fee08b', '#fc8d59', '#d53e4f']3fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']4counts = [5, 3, 4, 2, 4, 6]  5source = ColumnDataSource(data=dict(fruits=fruits, counts=counts, color=Spectral6))6p = figure(x_range=(0,9), y_range=fruits, plot_height=250, title="Fruit Counts",7#            toolbar_location=None, tools=""  8          )  9p.hbar(y='fruits',left=0,right='counts', height=0.5 ,color='color', legend="fruits", source=source)  
10p.xgrid.grid_line_color = None  
11# p.legend.orientation = "horizontal"  
12p.legend.location = "top_right"  
13show(p)

运行结果如图2-46所示。

代码示例2-33第9行采用hbar()方法展示了几种水果的销量,并使用color直接定义颜色列表。

▲图2-46 代码示例2-33运行结果

  • 代码示例 2-34

1fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'] 2years = ['2015', '2016', '2017']   3data = {'fruits' : fruits,   4             '2015'   : [2, 1, 4, 3, 2, 4],   5             '2016'   : [5, 3, 3, 2, 4, 6],   6             '2017'   : [3, 2, 4, 4, 5, 3]}   7# 创建复合列表 [ ("Apples", "2015"), ("Apples", "2016"), ("Apples", "2017"), ("Pears", "2015), ... ]   8x = [ (fruit, year) for fruit in fruits for year in years ]   9counts = sum(zip(data['2015'], data['2016'], data['2017']), ()) # 分组求和(堆叠总数)10source = ColumnDataSource(data=dict(x=x, counts=counts))  11# 画布  12p = figure(x_range=FactorRange(*x), plot_height=350, title="Fruit Counts by Year",  13#            toolbar_location=None, tools=""  14          )  15# 柱状图  16p.vbar(x='x', top='counts', width=0.9, source=source)  17# 其他  18p.y_range.start = 0  19p.x_range.range_padding = 0.1  20p.xaxis.major_label_orientation = 1  21p.xgrid.grid_line_color = None  22# 显示  23show(p)

运行结果如图2-47所示。

代码示例2-34第8、9行数据预处理,读者可以打印数据格式;笔者建议在实践中多采用Pandas进行数据预处理,其DataFrames的复合序列可以直接作为分组柱状图的数据。

▲图2-47 代码示例2-34运行结果

  • 代码示例 2-35

1# 数据   2fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries'] 3years = ['2015', '2016', '2017']   4data = {'fruits' : fruits,   5        '2015'   : [2, 1, 4, 3, 2, 4],   6        '2016'   : [5, 3, 3, 2, 4, 6],   7        '2017'   : [3, 2, 4, 4, 5, 3]}   8palette = ["#c9d9d3", "#718dbf", "#e84d60"]   9x = [ (fruit, year) for fruit in fruits for year in years ]  10counts = sum(zip(data['2015'], data['2016'], data['2017']), ()) # like an hstack11source = ColumnDataSource(data=dict(x=x, counts=counts))  12# 画布  13p = figure(x_range=FactorRange(*x), plot_height=350, title="Fruit Counts by Year",14#            toolbar_location=None, tools=""  15          )  16# 绘图  17p.vbar(x='x', top='counts', width=0.9, source=source, line_color="white",  18       fill_color=factor_cmap('x', palette=palette, factors=years, start=1, end=2))19# 其他  20p.y_range.start = 0  21p.x_range.range_padding = 0.1  22p.xaxis.major_label_orientation = 1  23p.xgrid.grid_line_color = None  24# 显示  25show(p)

运行结果如图2-48所示。

▲图2-48 代码示例2-35运行结果

代码示例2-35在代码示例2-33的基础上增加了柱状图颜色(第18行),factor_cmap方法是将色板对应的颜色列表映射到相应的分类数据上。

  • 代码示例 2-36

1from bokeh.core.properties import value   2from bokeh.transform import dodge     3# 数据   4fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']   5years = ['2015', '2016', '2017']   6data = {'fruits' : fruits,   7             '2015'   : [2, 1, 4, 3, 2, 4],   8             '2016'   : [5, 3, 3, 2, 4, 6],   9             '2017'   : [3, 2, 4, 4, 5, 3]}  10source = ColumnDataSource(data=data)  11# 画布  12p = figure(x_range=fruits, y_range=(0, 10), plot_height=350, title="Fruit Counts by Year",  13#            toolbar_location=None, tools=""  14          )  15# 绘图,采用doge数据转换,按产品种类不同年份分组显示  16p.vbar(x=dodge('fruits', -0.25, range=p.x_range), top='2015', width=0.2, source=source,  17       color="#c9d9d3", legend=value("2015"))  1819p.vbar(x=dodge('fruits',  0.0,  range=p.x_range), top='2016', width=0.2, source=source,  20       color="#718dbf", legend=value("2016"))  2122p.vbar(x=dodge('fruits',  0.25, range=p.x_range), top='2017', width=0.2, source=source,23       color="#e84d60", legend=value("2017"))  24# 其他参数设置  25p.x_range.range_padding = 0.1  26p.xgrid.grid_line_color = None  27p.legend.location = "top_left"  28p.legend.orientation = "horizontal"  29# 显示  30show(p)

运行结果如图2-49所示。

▲图2-49 代码示例2-36运行结果

代码示例2-36第16、19、22行使用vbar()方法分别绘制2015—2017年各种水果的销量;其中dodge方法按每年不同种类水果的数据分散绘制在x轴范围内,是将色板对应的颜色列表映射到相应的分类数据上,dodge第二个参数表示该分类的起始绘制点。

  • 代码示例 2-37

1from bokeh.core.properties import value   2# 数据   3fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']   4years = ["2015", "2016", "2017"]   5colors = ["#c9d9d3", "#718dbf", "#e84d60"]   6data = {'fruits' : fruits,   7        '2015'   : [2, 1, 4, 3, 2, 4],   8        '2016'   : [5, 3, 4, 2, 4, 6],   9        '2017'   : [3, 2, 4, 4, 5, 3]}  10# 画布  11p = figure(x_range=fruits, plot_height=250, title="Fruit Counts by Year",  12#            toolbar_location=None,  13#            tools="hover",  14           tooltips="$name @fruits: @$name")  15# 绘图,直接堆叠各年数据  16p.vbar_stack(years, x='fruits', width=0.9, color=colors, source=data,  17             legend=[value(x) for x in years]) # legend=[{'value': '2015'}, {'value': '2016'}, {'value': '2017'}]  18# 其他  19p.y_range.start = 0  20p.x_range.range_padding = 0.1  21p.xgrid.grid_line_color = None  22p.axis.minor_tick_line_color = None  23p.outline_line_color = None  24p.legend.location = "top_left"  25p.legend.orientation = "horizontal"  26# 显示  27show(p)

运行结果如图2-50所示。

▲图2-50 代码示例2-37运行结果

代码示例2-37第16行使用vbar_stack()方法实现竖向堆叠柱状图,该方法具体的参数说明如下。

p.vbar_stack(stackers, **kw)参数说明。

  • stackers (seq[str]) : 列表,由绘图数据中需要进行堆叠的数据列名称组成。

其他参数基本上同vbar()方法。

  • 代码示例 2-38

 1from bokeh.models import Legend  2p = figure(y_range=fruits, plot_height=250,title="Fruit Counts by Year",  3#            toolbar_location=None, tools=""  4          )  5source = ColumnDataSource(data=data)  6p.hbar_stack(years, y='fruits',height=0.8, color=colors, source=source,  7            legend=[value(x) for x in years] )  # 堆叠柱状图,逐年堆叠  8p.x_range.start = 0  9p.y_range.range_padding = 0.1 # x轴两侧空白  
10p.ygrid.grid_line_color = None  
11p.axis.minor_tick_line_color = None  
12p.outline_line_color = None  
13p.legend.location = "top_right"  
14# p.legend.orientation = "horizontal"  
15p.legend.click_policy="hide"  
16show(p)

运行结果如图2-51所示。

▲图2-51 代码示例2-38运行结果

代码示例2-38第6行使用hbar_stack()方法实现横向堆叠柱状图,该方法具体的参数说明如下。

p.hbar_stack(stackers, **kw)参数说明。

  • stackers (seq[str]) : 列表,由绘图数据中需要进行堆叠的数据列名称组成。

其他参数基本上同vbar()方法。

在学习或实践过程中,图例可能遮盖图表,此时可以将图例移到坐标轴外或单独作为一个图层。

  • 代码示例 2-39

 1from bokeh.palettes import Spectral5  2from bokeh.sampledata.autompg import autompg as df  3from bokeh.transform import factor_cmap  4# 数据,预处理  5df.cyl = df.cyl.astype(str)  6group = df.groupby('cyl')  7cyl_cmap = factor_cmap('cyl', palette=Spectral5, factors=sorted(df.cyl.unique())) # 分组颜色映射  8# 画布  9p = figure(plot_height=350, x_range=group, title="MPG by # Cylinders",  
10#            toolbar_location=None, tools=""  
11          )  
12# 绘图  
13p.vbar(x='cyl', top='mpg_mean', width=0.9, source=group,  
14       line_color=cyl_cmap, fill_color=cyl_cmap)  
15# 其他  
16p.y_range.start = 0  
17p.xgrid.grid_line_color = None  
18p.xaxis.axis_label = "some stuff"  
19p.xaxis.major_label_orientation = 1.2  
20p.outline_line_color = None  
21# 显示  
22show(p)  

运行结果如图2-52所示。

▲图2-52 代码示例2-39运行结果

代码示例2-39第13行使用vbar()用柱状图展示了汽车缸数与每加仑汽油能行驶的英里数之间的关系。

  • 代码示例 2-40

1from bokeh.sampledata.autompg import autompg_clean as df  2df.cyl = df.cyl.astype(str)  3df.yr = df.yr.astype(str)  4group = df.groupby(['cyl', 'mfr']) # 复合条件分组,[缸数、厂家]  5index_cmap = factor_cmap('cyl_mfr', palette=Spectral5, factors=sorted(df.cyl.unique()), end=1)  6# 画布  7p = figure(plot_width=800, plot_height=300, title="Mean MPG by # Cylinders and Manufacturer",  8           x_range=group, tooltips=[("MPG", "@mpg_mean"), ("Cyl, Mfr", "@cyl_mfr")])  9# 绘图  
10p.vbar(x='cyl_mfr', top='mpg_mean', width=1, source=group,  
11       line_color="white", fill_color=index_cmap, ) # 尾气排放量均值  
12# 其他  
13p.y_range.start = 0  
14p.x_range.range_padding = 0.05  # 同css中的padding  
15p.xgrid.grid_line_color = None  
16p.xaxis.axis_label = "Manufacturer grouped by # Cylinders"  
17p.xaxis.major_label_orientation = 1.2 # x轴标签旋转  
18p.outline_line_color = None  
19# 显示  
20show(p)

运行结果如图2-53所示。

▲图2-53 代码示例2-40运行结果

代码示例2-40第10行使用vbar()绘制分组柱状图,数据分组采用Pandas的groupby方法,该数据为复合序列,展示了汽车缸数与每加仑汽油能行驶的英里数之间的关系。

  • 代码示例 2-41

 1# 数据  2from bokeh.sampledata.sprint import sprint  3sprint.Year = sprint.Year.astype(str)  4group = sprint.groupby('Year')  5source = ColumnDataSource(group)  6# 画布  7p = figure(y_range=group, x_range=(9.5,12.7), plot_width=400, plot_height=550,   8#            toolbar_location=None,  9           title="Time Spreads for Sprint Medalists (by Year)")  
10# 绘图  
11p.hbar(y="Year", left='Time_min', right='Time_max', height=0.4, source=source) # 水平柱状图  
12# 其他  
13p.ygrid.grid_line_color = None  
14p.xaxis.axis_label = "Time (seconds)"  
15p.outline_line_color = None  
16# 显示  
17show(p)

运行结果如图2-54所示。

▲图2-54 代码示例2-41运行结果

代码示例2-41第11行使用hbar()绘制瀑布图,参数中left、right为柱左、右坐标。若左侧的起始坐标均为某一定值,则变回横向柱状图。

  • 代码示例 2-42

1from bokeh.core.properties import value   2from bokeh.models import ColumnDataSource, FactorRange   3# 数据   4factors = [   5        ("Q1", "jan"), ("Q1", "feb"), ("Q1", "mar"),   6        ("Q2", "apr"), ("Q2", "may"), ("Q2", "jun"),   7        ("Q3", "jul"), ("Q3", "aug"), ("Q3", "sep"),   8        ("Q4", "oct"), ("Q4", "nov"), ("Q4", "dec"),   910]  11regions = ['east', 'west']  12source = ColumnDataSource(data=dict(  13       x=factors,  14       east=[ 5, 5, 6, 5, 5, 4, 5, 6, 7, 8, 6, 9 ],  15       west=[ 5, 7, 9, 4, 5, 4, 7, 7, 7, 6, 6, 7 ],  16))  17# 画布  18p = figure(x_range=FactorRange(*factors), plot_height=250,  19#                    toolbar_location=None, tools=""  20          )  21# 绘图  22p.vbar_stack(regions, x='x', width=0.9, alpha=0.5, color=["blue", "red"], source=source,23                   legend=[value(x) for x in regions])  24# 其他  25p.y_range.start = 0  26p.y_range.end = 18  27p.x_range.range_padding = 0.1  28p.xaxis.major_label_orientation = 1  29p.xgrid.grid_line_color = None  30p.legend.location = "top_center"  31p.legend.orientation = "horizontal"  32# 显示  33show(p)

运行结果如图2-55所示。

▲图2-55 代码示例2-42运行结果

代码示例2-42第18行使用FactorRange ()方法预定义x轴的范围(factors的数据格式与Pandas复合序列相似);第19行绘制竖向堆叠柱状图。与常规竖向堆叠柱状图相比,该图采用了复合序列,多展示了一个维度。

  • 代码示例 2-43

1from bokeh.models import ColumnDataSource   2from bokeh.palettes import GnBu3, OrRd3   3# 数据   4fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']   5years = ["2015", "2016", "2017"]   6exports = {'fruits' : fruits,   7           '2015'   : [2, 1, 4, 3, 2, 4],   8           '2016'   : [5, 3, 4, 2, 4, 6],   9           '2017'   : [3, 2, 4, 4, 5, 3]}  10imports = {'fruits' : fruits,  11           '2015'   : [-1, 0, -1, -3, -2, -1],  12           '2016'   : [-2, -1, -3, -1, -2, -2],  13           '2017'   : [-1, -2, -1, 0, -2, -2]}  14# 画布  15p = figure(y_range=fruits, plot_height=350, x_range=(-16, 16), title="Fruit import/export, by year",  16#            toolbar_location=None  17          )  18# 水平堆积柱状图出口(正向)  19p.hbar_stack(years, y='fruits', height=0.9, color=GnBu3, source=ColumnDataSource(exports),  20             legend=["%s exports" % x for x in years])  21# 水平堆积柱状图进口(负向)22p.hbar_stack(years, y='fruits', height=0.9, color=OrRd3, source=ColumnDataSource(imports),  23             legend=["%s imports" % x for x in years])  24# 其他25p.y_range.range_padding = 0.1  26p.ygrid.grid_line_color = None  27p.legend.location = "top_left"  28p.axis.minor_tick_line_color = None  29p.outline_line_color = None  30# 显示31show(p)

运行结果如图2-56所示。

代码示例2-43第19、22行分别使用hbar_stack ()方法向左、右两个方向绘制,实现横向堆叠柱状图;注意,当y轴为分类数据(字符串)时,一般需要预先定义y_range。笔者在实践中习惯用该图,不受纵向长度约束,适合数据较多的长图,例如全国各省某类型数据的比较。

▲图2-56 代码示例2-43运行结果

  • 代码示例 2-44

1from bokeh.models import FactorRange   2factors = [   3       ("Q1", "jan"), ("Q1", "feb"), ("Q1", "mar"),   4       ("Q2", "apr"), ("Q2", "may"), ("Q2", "jun"),   5       ("Q3", "jul"), ("Q3", "aug"), ("Q3", "sep"),   6       ("Q4", "oct"), ("Q4", "nov"), ("Q4", "dec"),   7 8] # 复合数列   9p = figure(x_range=FactorRange(*factors), plot_height=350,  10#                    toolbar_location=None, tools=""  11          ) # 如果不采用ColumnDataSource,就必须预定义factors  12x = [ 10, 12, 16, 9, 10, 8, 12, 13, 14, 14, 12, 16 ]  13# 水平柱状图  14p.vbar(x=factors, top=x, width=0.9, alpha=0.5)  15# 折线  16p.line(x=["Q1", "Q2", "Q3", "Q4"], y=[12, 9, 13, 14], color="red", line_width=2)17# 其他  18p.y_range.start = 0  19p.x_range.range_padding = 0.1  20p.xaxis.major_label_orientation = 1  21p.xgrid.grid_line_color = None  22# 显示  23show(p)

运行结果如图2-57所示。

▲图2-57 代码示例2-44运行结果

关于作者:

屈希峰,资深Python工程师,Bokeh领域的实践者和布道者,对Bokeh有深入的研究。擅长Flask、MongoDB、Sklearn等技术,实践经验丰富。知乎多个专栏(Python中文社区、Python程序员、大数据分析挖掘)作者,专栏累计关注用户十余万人。

本文摘编自《Python数据可视化:基于Bokeh的可视化绘图》,经出版方授权发布。

编辑:王菁

校对:洪舒越

这篇关于柱状图、堆叠柱状图、瀑布图有什么区别?怎样用Python绘制?(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901430

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu