深度特征合成与遗传特征生成,两种自动特征生成策略的比较

2024-04-13 18:48

本文主要是介绍深度特征合成与遗传特征生成,两种自动特征生成策略的比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2f83df9d95d4ab9be0a16d8bbbaccd3e.png

来源:Deephub Imba
本文约1800字,建议阅读8分钟
本文我们将通过一个示例介绍如何使用 ATOM 包来快速比较两种自动特征生成算法。

特征工程是从现有特征创建新特征的过程,通过特征工程可以捕获原始特征不具有的与目标列的额外关系。这个过程对于提高机器学习算法的性能非常重要。尽管当数据科学家将特定的领域知识应用特定的转换时,特征工程效果最好,但有一些方法可以以自动化的方式完成,而无需先验领域知识。

在本文中,我们将通过一个示例介绍如何使用 ATOM 包来快速比较两种自动特征生成算法:深度特征合成 (Deep feature Synthesis, DFS) 和遗传特征生成 (Genetic feature generation, GFG)。ATOM 是一个开源 Python 包,可以帮助数据科学家加快对机器学习管道的探索。

基线模型

为了进行对比,作为对比的基线只使用初始特征来训练模型。这里使用的数据是来自 Kaggle的澳大利亚天气数据集的变体。该数据集的目标是预测明天是否会下雨,在目标列 RainTomorrow 上训练一个二元分类器。

 
import pandas as pd
from atom import ATOMClassifier# Load the data and have a look
X = pd.read_csv("./datasets/weatherAUS.csv")
X.head()

51a85180cf71acb6446cd18661ec821d.png

初始化实例并准备建模数据。这里仅使用数据集的一个子集(1000 行)进行演示。下面的代码估算缺失值并对分类特征进行编码。

 
atom = ATOMClassifier(X, y="RainTomorrow", n_rows=1e3, verbose=2)
atom.impute()
atom.encode()

输出如下所示。

5a9fa58ba21a302e679a81acc8809afc.png

可以使用 dataset 属性快速检查数据转换后的样子。

 
atom.dataset.head()

5e65e9a86c6992f224476ab6acab62af.png

数据现在已准备好。本文将使用 LightGBM 模型进行预测。使用 atom 训练和评估模型非常简单:

atom.run(models="LGB", metric="accuracy")

4b7678c89a4cdd7b77b6878beec8f784.png

可以看到测试集上达到了 0.8471 的准确率。下面看看自动特征生成是否可以改善这一点。

DFS

DFS 将标准数学运算符(加法、减法、乘法等)应用于现有特征,并组合这些特征。例如,在我们的数据集上,DFS 可以创建新特征 MinTemp + MaxTemp 或 WindDir9am x WindDir3pm。

为了能够比较模型,需要为 DFS 管道创建了一个新分支。如果你不熟悉 ATOM 的分支系统,请查看官方文档。

atom.branch = "dfs"

使用 atom 的 feature_generation 方法在新分支上运行 DFS。为了起见,这里只使用加法和乘法创建新特征(使用 div、log 或 sqrt 运算符可能会返回具有 inf 或 nan 值的特征,所以还需要再次进行处理)。

 
atom.feature_generation(strategy="dfs",n_features=10,operators=["add", "mul"],
)

ATOM 是使用 featuretools 包来运行 DFS的 。这里使用了 n_features=10,因此从所有可能的组合中随机选择的十个特征被添加到数据集中。

 
atom.dataset.head()

a622a1bc78692585aa95036cfefd9fd6.png

再次训练模型:

atom.run(models="LGB_dfs")

需要注意的是

  • 在模型的首字母缩写词后添加标签 _dfs 以不覆盖基线模型。

  • 不再需要指定用于验证的指标。atom 实例将自动使用任何先前模型训练的相同指标。在我们的例子中为accuracy。

dc9bf042eaf1b48871f95824f41991c5.png

看起来 DFS 并没有改进模型。结果甚至变得更糟了。让我们看看 GFG 的表现如何。

GFG

GFG 使用遗传编程(进化编程的一个分支)来确定哪些特征是有效的并基于这些特征创建新特征。与 DFS的盲目尝试特征组合不同,GFG 尝试在每一代算法中改进其特征。GFG 使用与 DFS 相同的运算符,但不是只应用一次转换,而是进一步发展它们,创建特征组合的嵌套结构。在使用运算符 add (+) 和 mul (x),特征组合的方式可能是:

add(add(mul(MinTemp, WindDir3pm), Pressure3pm), mul(MaxTemp, MinTemp))

在使用时与 DFS 一样,首先创建一个新分支(从原始 master 分支将 DFS 排除),然后训练和评估模型。同样,这里创建了 10 个新特征。

注意:ATOM 在底层使用 gplearn 包来运行 GFG。

 
atom.branch = "gfg_from_master"
atom.feature_generation(strategy="GFG",n_features=10,operators=["add", "mul"],
)

b3476d4149683829868fe781023085c1.png

可以通过 generic_features 属性访问新生成的特征、它们的名称和适应度(在遗传算法期间获得的分数)的概述。

 
atom.genetic_features

68306779345b14a3abbb653ee8d1d415.png

这里需要注意的是,由于特征的描述可能会变得很长(看上图),因此将新特征将被编号命名为例如feature n,其中 n 代表数据集中的第 n 个特征。

 
atom.dataset.head()

21e16460c675dadac5350fd7d5ca6a11.png

再次运行模型:

 
atom.run(models="LGB_gfg")

685a4b3a9566078851b1d0c1c3f1689e.png

这次得到了 0.8824 的准确率,比基线模型的 0.8471 好得多!

结果分析

所有三个模型都已训练完毕可以分析结果了。使用 results 属性可以查看所有模型在训练集和测试集上的得分。

 
atom.results

5ed07d0f6625c044eca0375fe8ac25b8.png

使用 atom 的 plot 方法可以进一步比较模型的特征和性能。

 
atom.plot_roc()

6d87e696415c80b18e7c8a74ef68a894.png

使用 atom 可以绘制多个相邻的图,查看哪些特征对模型的预测贡献最大

 
with atom.canvas(1, 3, figsize=(20, 8)):atom.lgb.plot_feature_importance(show=10, title="LGB")atom.lgb_dfs.plot_feature_importance(show=10, title="LGB + DFS")atom.lgb_gfg.plot_feature_importance(show=10, title="LGB + GFG")

463f452d0720a0594e50fa47111e4dc6.png

对于两个非基线模型,生成的特征似乎是都最重要的特征,这表明新特征与目标列相关,并且它们对模型的预测做出了重大贡献。

使用决策图,还可以查看特征对数据集中单个行的影响。

 
atom.lgb_dfs.decision_plot(index=0, show=15)

7b1ad2b8e80fee8a6e75bcb903fa2bc3.png

总结

本文中比较了在使用两种自动特征生成技术生成的新特征对于模型预测的表现。结果显示使用这些技术可以显着提高模型的性能。本文中使用了ATOM包简化处理训练和建模流程,有关 ATOM 的更多信息,请查看包的文档。

ATOM的github地址:

https://github.com/tvdboom/ATOM

使用的kaggle数据集地址:

https://www.kaggle.com/jsphyg/weather-dataset-rattle-package

编辑:王菁

178d1079264086cfd242c9cd9f8f3f93.png

这篇关于深度特征合成与遗传特征生成,两种自动特征生成策略的比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900930

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java8 Collectors.toMap() 的两种用法

《Java8Collectors.toMap()的两种用法》Collectors.toMap():JDK8中提供,用于将Stream流转换为Map,本文给大家介绍Java8Collector... 目录一、简单介绍用法1:根据某一属性,对对象的实例或属性做映射用法2:根据某一属性,对对象集合进行去重二、Du

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单