深度特征合成与遗传特征生成,两种自动特征生成策略的比较

2024-04-13 18:48

本文主要是介绍深度特征合成与遗传特征生成,两种自动特征生成策略的比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2f83df9d95d4ab9be0a16d8bbbaccd3e.png

来源:Deephub Imba
本文约1800字,建议阅读8分钟
本文我们将通过一个示例介绍如何使用 ATOM 包来快速比较两种自动特征生成算法。

特征工程是从现有特征创建新特征的过程,通过特征工程可以捕获原始特征不具有的与目标列的额外关系。这个过程对于提高机器学习算法的性能非常重要。尽管当数据科学家将特定的领域知识应用特定的转换时,特征工程效果最好,但有一些方法可以以自动化的方式完成,而无需先验领域知识。

在本文中,我们将通过一个示例介绍如何使用 ATOM 包来快速比较两种自动特征生成算法:深度特征合成 (Deep feature Synthesis, DFS) 和遗传特征生成 (Genetic feature generation, GFG)。ATOM 是一个开源 Python 包,可以帮助数据科学家加快对机器学习管道的探索。

基线模型

为了进行对比,作为对比的基线只使用初始特征来训练模型。这里使用的数据是来自 Kaggle的澳大利亚天气数据集的变体。该数据集的目标是预测明天是否会下雨,在目标列 RainTomorrow 上训练一个二元分类器。

 
import pandas as pd
from atom import ATOMClassifier# Load the data and have a look
X = pd.read_csv("./datasets/weatherAUS.csv")
X.head()

51a85180cf71acb6446cd18661ec821d.png

初始化实例并准备建模数据。这里仅使用数据集的一个子集(1000 行)进行演示。下面的代码估算缺失值并对分类特征进行编码。

 
atom = ATOMClassifier(X, y="RainTomorrow", n_rows=1e3, verbose=2)
atom.impute()
atom.encode()

输出如下所示。

5a9fa58ba21a302e679a81acc8809afc.png

可以使用 dataset 属性快速检查数据转换后的样子。

 
atom.dataset.head()

5e65e9a86c6992f224476ab6acab62af.png

数据现在已准备好。本文将使用 LightGBM 模型进行预测。使用 atom 训练和评估模型非常简单:

atom.run(models="LGB", metric="accuracy")

4b7678c89a4cdd7b77b6878beec8f784.png

可以看到测试集上达到了 0.8471 的准确率。下面看看自动特征生成是否可以改善这一点。

DFS

DFS 将标准数学运算符(加法、减法、乘法等)应用于现有特征,并组合这些特征。例如,在我们的数据集上,DFS 可以创建新特征 MinTemp + MaxTemp 或 WindDir9am x WindDir3pm。

为了能够比较模型,需要为 DFS 管道创建了一个新分支。如果你不熟悉 ATOM 的分支系统,请查看官方文档。

atom.branch = "dfs"

使用 atom 的 feature_generation 方法在新分支上运行 DFS。为了起见,这里只使用加法和乘法创建新特征(使用 div、log 或 sqrt 运算符可能会返回具有 inf 或 nan 值的特征,所以还需要再次进行处理)。

 
atom.feature_generation(strategy="dfs",n_features=10,operators=["add", "mul"],
)

ATOM 是使用 featuretools 包来运行 DFS的 。这里使用了 n_features=10,因此从所有可能的组合中随机选择的十个特征被添加到数据集中。

 
atom.dataset.head()

a622a1bc78692585aa95036cfefd9fd6.png

再次训练模型:

atom.run(models="LGB_dfs")

需要注意的是

  • 在模型的首字母缩写词后添加标签 _dfs 以不覆盖基线模型。

  • 不再需要指定用于验证的指标。atom 实例将自动使用任何先前模型训练的相同指标。在我们的例子中为accuracy。

dc9bf042eaf1b48871f95824f41991c5.png

看起来 DFS 并没有改进模型。结果甚至变得更糟了。让我们看看 GFG 的表现如何。

GFG

GFG 使用遗传编程(进化编程的一个分支)来确定哪些特征是有效的并基于这些特征创建新特征。与 DFS的盲目尝试特征组合不同,GFG 尝试在每一代算法中改进其特征。GFG 使用与 DFS 相同的运算符,但不是只应用一次转换,而是进一步发展它们,创建特征组合的嵌套结构。在使用运算符 add (+) 和 mul (x),特征组合的方式可能是:

add(add(mul(MinTemp, WindDir3pm), Pressure3pm), mul(MaxTemp, MinTemp))

在使用时与 DFS 一样,首先创建一个新分支(从原始 master 分支将 DFS 排除),然后训练和评估模型。同样,这里创建了 10 个新特征。

注意:ATOM 在底层使用 gplearn 包来运行 GFG。

 
atom.branch = "gfg_from_master"
atom.feature_generation(strategy="GFG",n_features=10,operators=["add", "mul"],
)

b3476d4149683829868fe781023085c1.png

可以通过 generic_features 属性访问新生成的特征、它们的名称和适应度(在遗传算法期间获得的分数)的概述。

 
atom.genetic_features

68306779345b14a3abbb653ee8d1d415.png

这里需要注意的是,由于特征的描述可能会变得很长(看上图),因此将新特征将被编号命名为例如feature n,其中 n 代表数据集中的第 n 个特征。

 
atom.dataset.head()

21e16460c675dadac5350fd7d5ca6a11.png

再次运行模型:

 
atom.run(models="LGB_gfg")

685a4b3a9566078851b1d0c1c3f1689e.png

这次得到了 0.8824 的准确率,比基线模型的 0.8471 好得多!

结果分析

所有三个模型都已训练完毕可以分析结果了。使用 results 属性可以查看所有模型在训练集和测试集上的得分。

 
atom.results

5ed07d0f6625c044eca0375fe8ac25b8.png

使用 atom 的 plot 方法可以进一步比较模型的特征和性能。

 
atom.plot_roc()

6d87e696415c80b18e7c8a74ef68a894.png

使用 atom 可以绘制多个相邻的图,查看哪些特征对模型的预测贡献最大

 
with atom.canvas(1, 3, figsize=(20, 8)):atom.lgb.plot_feature_importance(show=10, title="LGB")atom.lgb_dfs.plot_feature_importance(show=10, title="LGB + DFS")atom.lgb_gfg.plot_feature_importance(show=10, title="LGB + GFG")

463f452d0720a0594e50fa47111e4dc6.png

对于两个非基线模型,生成的特征似乎是都最重要的特征,这表明新特征与目标列相关,并且它们对模型的预测做出了重大贡献。

使用决策图,还可以查看特征对数据集中单个行的影响。

 
atom.lgb_dfs.decision_plot(index=0, show=15)

7b1ad2b8e80fee8a6e75bcb903fa2bc3.png

总结

本文中比较了在使用两种自动特征生成技术生成的新特征对于模型预测的表现。结果显示使用这些技术可以显着提高模型的性能。本文中使用了ATOM包简化处理训练和建模流程,有关 ATOM 的更多信息,请查看包的文档。

ATOM的github地址:

https://github.com/tvdboom/ATOM

使用的kaggle数据集地址:

https://www.kaggle.com/jsphyg/weather-dataset-rattle-package

编辑:王菁

178d1079264086cfd242c9cd9f8f3f93.png

这篇关于深度特征合成与遗传特征生成,两种自动特征生成策略的比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900930

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法