力扣2923、2924.找到冠军I、II---(简单题、中等题、Java、拓扑排序)

2024-04-13 18:28

本文主要是介绍力扣2923、2924.找到冠军I、II---(简单题、中等题、Java、拓扑排序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、找到冠军I

思路描述:

代码:

二、找到冠军II

思路描述:

代码:


一、找到冠军I

一场比赛中共有 n 支队伍,按从 0 到  n - 1 编号。

给你一个下标从 0 开始、大小为 n * n 的二维布尔矩阵 grid 。对于满足 0 <= i, j <= n - 1 且 i != j 的所有 i, j :如果 grid[i][j] == 1,那么 i 队比 j 队  ;否则,j 队比 i 队  。

在这场比赛中,如果不存在某支强于 a 队的队伍,则认为 a 队将会是 冠军 。

返回这场比赛中将会成为冠军的队伍。

示例 1:

输入:grid = [[0,1],[0,0]]
输出:0
解释:比赛中有两支队伍。
grid[0][1] == 1 表示 0 队比 1 队强。所以 0 队是冠军。

示例 2:

输入:grid = [[0,0,1],[1,0,1],[0,0,0]]
输出:1
解释:比赛中有三支队伍。
grid[1][0] == 1 表示 1 队比 0 队强。
grid[1][2] == 1 表示 1 队比 2 队强。
所以 1 队是冠军。

思路描述:

        这个题属于简单题,我们只要给出一个起始队伍的编号即可,从该队伍编号开始,遍历二维数组,如果有大于本身的,即强于本身的,就将编号改编为强于本身的那个编号,然后,再从该编号开始进行遍历,最多遍历n次才才找到,因此时间复杂度为O(n*m)。

代码:

class Solution {public int findChampion(int[][] grid) {int maxIndex=0;int n=grid.length;int m=grid[0].length;for(int j=0;j<m;j++){int falg=0;for(int i=0;i<n;i++){if(grid[i][maxIndex]==1){maxIndex=i;falg=1;break;}}if(falg==0){return maxIndex;}}return maxIndex;}
}

二、找到冠军II

一场比赛中共有 n 支队伍,按从 0 到  n - 1 编号。每支队伍也是 有向无环图(DAG) 上的一个节点。

给你一个整数 n 和一个下标从 0 开始、长度为 m 的二维整数数组 edges 表示这个有向无环图,其中 edges[i] = [ui, vi] 表示图中存在一条从 ui 队到 vi 队的有向边。

从 a 队到 b 队的有向边意味着 a 队比 b 队  ,也就是 b 队比 a 队  。

在这场比赛中,如果不存在某支强于 a 队的队伍,则认为 a 队将会是 冠军 。

如果这场比赛存在 唯一 一个冠军,则返回将会成为冠军的队伍。否则,返回 -1 。

注意

  •  是形如 a1, a2, ..., an, an+1 的一个序列,且满足:节点 a1 与节点 an+1 是同一个节点;节点 a1, a2, ..., an 互不相同;对于范围 [1, n] 中的每个 i ,均存在一条从节点 ai 到节点 ai+1 的有向边。
  • 有向无环图 是不存在任何环的有向图。

示例 1:

输入:n = 3, edges = [[0,1],[1,2]]
输出:0
解释:1 队比 0 队弱。2 队比 1 队弱。所以冠军是 0 队。

示例 2:

输入:n = 4, edges = [[0,2],[1,3],[1,2]]
输出:-1
解释:2 队比 0 队和 1 队弱。3 队比 1 队弱。但是 1 队和 0 队之间不存在强弱对比。所以答案是 -1 。

思路描述:

        这道题能够想到拓扑结构的话,那么也算是一个简单题。

        利用拓扑结构,我们定义一个father数组,来存储第i号节点的前驱节点数量,而本题就是要查找的在father数组中前驱节点数量为0的那些编号。

代码:

class Solution {public int findChampion(int n, int[][] edges) {int[] father=new int[n];int m=edges.length;int maxCount=0;int maxIndex=0;for(int i=0;i<m;i++){father[edges[i][1]]++;}for(int i=0;i<n;i++){if(father[i]==0){maxCount++;maxIndex=i;}}if(maxCount==1){return maxIndex;}return -1;}
}

这篇关于力扣2923、2924.找到冠军I、II---(简单题、中等题、Java、拓扑排序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900881

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操