Day 23 669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树 总结篇

2024-04-13 18:12

本文主要是介绍Day 23 669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树 总结篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

修剪二叉搜索树

给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。

669.修剪二叉搜索树

669.修剪二叉搜索树1

​ 最直接的想法,遍历树然后找到root->val在[L,R]以外的节点删除,通过递归处理返回根节点;

​ 如果此时简单的给出这种代码:

       root->left = trimBST(root->left, low, high);root->right = trimBST(root->right, low, high);

​ 就会忽视掉当前节点不在范围内但是节点左(右)子树可能在范围内的情况;

​ 如下图所示:

​ 也就是在删除节点时,还要对其子树进行判断;至于实现方式可以参考上一题的子树嫁接方法,无须重构二叉树结构;

​ 下面写递归三部曲:

​ 首先确定递归函数参数和返回值:遍历整棵树,做修改,其实不需要返回值也可以完成修剪(其实就是从二叉树中移除节点)的操作;但是有返回值,更方便,可以通过递归函数的返回值来移除节点,不需要额外操作;

​ 其次确定终止条件:修剪的操作并不是在终止条件进行的,所以就是遇到空节点返回就可以了;

​ 最后确定单层递归的逻辑:嫁接子树,此处不再赘述;

​ 递归代码如下:

	TreeNode* traversal(TreeNode* root, int L, int R){if(root == NULL)	return NULL;if(root->val < L){//节点值小于左边边界值TreeNode* tempNode = traversal(root->right, L, R);//此节点右子树中寻找所有大于L的值的节点,继续嵌套递归修剪右子树;return tempNode;}if(root->val > R)	return	traversal(root->left, L, R);//同理,并非直接return子树,而是修剪过后再returnroot->left = traversal(root->left, L, R);//对符合区间条件的根节点左右子树进行操作root->right = traversal(root->right, L, R);return root;}

将有序数组转换为二叉搜索树

将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。

本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。

示例:

108.将有序数组转换为二叉搜索树

​ 按题目要求切割数组得到平衡二叉搜索树,则从数组中间作为根节点开始切割;

​ 同时注意循环不变量,因为这里是需要不断对数组进行切割直到子数组的长度为一;

​ 遍历代码如下:

	TreeNode* traversal(vector<int>& nums, int L, int R){//确定函数参数和返回值//这里选择左闭右开的切割区间,则子区间停止切割的终止条件即是数组长度等于零的时候if(L >= R)	return NULL;//单层递归逻辑int mid = (R-L)/2+L;//防止int溢出TreeNode* root = new TreeNode(nums[mid]);//确定根节点root->left = traversal(nums, L, mid);//左闭右开root->right = traversal(nums, mid+1, R);return root;}

把二叉搜索树转化为累加树

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左右子树也必须是二叉搜索树。

示例 1:

538.把二叉搜索树转换为累加树

  • 输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
  • 输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

  • 输入:root = [0,null,1]
  • 输出:[1,null,1]

示例 3:

  • 输入:root = [1,0,2]
  • 输出:[3,3,2]

示例 4:

  • 输入:root = [3,2,4,1]
  • 输出:[7,9,4,10]

提示:

  • 树中的节点数介于 0 和 104 之间。
  • 每个节点的值介于 -104 和 104 之间。
  • 树中的所有值互不相同
  • 给定的树为二叉搜索树。

​ 如果给定的是一个有序数组,则[1, 2, 3, 4]的结果就是[10, 9, 7, 4],那二叉树呢?

​ 从二叉搜索树的最大值开始往前递加,无疑就是处理顺序的改变,即右中左的顺序来遍历整个二叉搜索树,即反中序遍历;

​ 则递归代码如下:

	int sum = 0;//记录前一个节点的数值void traversal(TreeNode* cur){//确定函数参数和返回值:遍历整棵树且无须对返回值进行处理if(!cur)	return;//确定终止条件:为空返回//if(cur->right)	sum += cur->right->val;	单层逻辑traversal(cur->right);cur->val += sum;sum = cur->val;//更新sum//if(cur->left)	sum += cur->left->val;traversal(cur->left);}

​ 整体代码如下:

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
private:int sum = 0;//记录前一个节点的数值void traversal(TreeNode* cur){//确定函数参数和返回值:遍历整棵树且无须对返回值进行处理if(!cur)	return;//确定终止条件:为空返回//if(cur->right)	sum += cur->right->val;	单层逻辑traversal(cur->right);cur->val += sum;sum = cur->val;//更新sum//if(cur->left)	sum += cur->left->val;traversal(cur->left);}
public:TreeNode* convertBST(TreeNode* root) {sum = 0;traversal(root);return root;}
};

总结

​ 递归和迭代的思想都要熟悉;

递归

​ 首先是熟知递归函数的参数和返回值:

​ 如何利用才能使算法的性能最优化,例如对返回节点类型、传入int替代vector;

​ (见Day 18)

​ 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值;(这种情况就是本文下半部分介绍的113.路径总和ii)

​ 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值; (这种情况我们在236. 二叉树的最近公共祖先 (opens new window)中介绍)

​ 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回;

​ 其次是关于递归函数的终止条件:

​ 有时候终止条件并不是简单的对处理节点判空即可,需要根据具体情境进行判断;

​ 最后是递归函数的单层遍历逻辑:

​ 二叉树题目的逻辑往往不算很难,大多时候可以理解为对一个遍历顺序特殊的数组进行处理,所以遍历顺序尤为重要;

​ 在构建二叉树的节点的时候,一定是选择从根节点开始(中左右),即前序遍历;

​ 在面对二叉搜索树时,一定是选择中序遍历(左中右),这样才能充分利用二叉搜索树的有序性质;

​ 求普通二叉树的属性的时候,一般采取后序遍历(左右中),因为需要返回中节点进行处理;

迭代

​ 迭代最主要的思想就是用栈来模拟树的逻辑,通过不断的push pop得到理想中的出栈顺序;

​ 一般在涉及到递归不是很好处理返回值的时候使用迭代,层序遍历就是一个典型的例子。

这篇关于Day 23 669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树 总结篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900857

相关文章

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li