MindOpt APL向量化建模语法的介绍与应用(2)

2024-04-13 13:52

本文主要是介绍MindOpt APL向量化建模语法的介绍与应用(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在数据科学、工程优化和其他科学计算领域中,向量和矩阵的运算是核心组成部分。MAPL作为一种数学规划语言,为这些领域的专业人员提供了强大的工具,通过向量式和矩阵式变量声明以及丰富的内置数学运算支持,大大简化了数学建模和优化问题的处理。在本文中,我们将探索MAPL的这些特性,并且通过示例来展示如何有效使用这些工具。

介绍与应用

矩阵和向量变量声明

在MAPL中,向量和矩阵变量的声明非常直观。例如,使用var X(3,2)可以创建一个3行2列的矩阵,而使用var Y(3)会创建一个包含3个元素的列向量。对这些变量的操作,如索引(X[1,0])和赋予初值,都可以使用易于理解的语法来完成。

var X(3,2) >=0 integer;print "Structure of X is:";
print X;print "----------------";
print "Sample Entries:";
print X[0,0];
print X[1,1];
print X[2,1];

结果如下:

Structure of X is:
[[ X0,  X1],[ X2,  X3],[ X4,  X5]]
----------------
Sample Entries:
+ [0, 0] -> integer [LB, UB, SOLN-VAl] = [0.000000, +inf, 0.000000
+ [1, 1] -> integer [LB, UB, SOLN-VAl] = [0.000000, +inf, 0.000000]
+ [2, 1] -> integer [LB, UB, SOLN-VAl] = [0.000000, +inf, 0.000000]

张量运算支持

张量运算是MAPL中一项强大的特性,它允许我们使用类似于线性代数中的标准操作符,例如:

  • 加法和减法(+,-):逐元素进行操作,要求操作数尺寸相同。
  • 乘法(*):支持标量和矩阵的乘法,以及矩阵与向量之间的乘法,必须满足传统的行列匹配规则。
  • 转置('):快速提供变量的转置形式,仅适用于矩阵。
  • 点乘(.*):逐元素乘法,用于两个相同尺寸的矩阵或向量。| 类型 | 操作符 | 说明 | 是否支持标量 | 用例 |
    | ---------- | ------ | ------------------------- | ------------ | ----------------- |
    | 一元操作符 | + | 向量/矩阵加法 | 是 | X+Y |
    | | - | 向量/矩阵减法,或者求反 | 是 | X-Y or -X |
    | | .* | 逐元素乘法 | 否 | X.*Y |
    | | * | 向量/矩阵乘法 | 是 | X*Y |
    | | ' | 矩阵转置 | 否 | X' |
    | | / | 向量/矩阵逐元素除以某标量 | 是 | X/2 |
    | 二元操作符 | ^ | 逐元素的p次幂 | 是 | X^2 |
    | 索引操作符 | [] | 获取指定位置的值 | 否 | X[3], Y[3,5] |

这些运算符为建模提供了极大的灵活性和表现力,支持以直观和自然的方式表达数学关系。

映射函数

映射函数是处理张量式变量必不可少的一部分,使建模张量间的函数变换更方便。MAPL提供了一系列映射函数,如exp、log和sin等,它们可以逐元素应用于向量或矩阵。例如,对于一个矩阵A,exp(A)会计算A中每个元素的指数值。

clear model;
var x(3,2) >=0;A = exp(x);print A;

运行上述代码,结果如下:

[[e^(x0), e^(x1)],[e^(x2), e^(x3)],[e^(x4), e^(x5)]]

混合计算和表达式引用

MAPL不仅支持张量间的运算,还支持张量和标量之间的混合计算。此外,它允许用户为复杂的表达式命名,以便于后续引用,这样可以避免重复的计算,并使模型清晰易于管理。

var x >=0;
var y(3,4);A = x + y;
B = y + x;
C = x - y;
D = y - x;
E = -y;
F = x*y;print y;
print A;
print B;
print C;
print D;
print E;
print F;

输出如下:

[[ y0,  y1,  y2,  y3],[ y4,  y5,  y6,  y7],[ y8,  y9, y10, y11]][[ x+y0,  x+y1,  x+y2,  x+y3],[ x+y4,  x+y5,  x+y6,  x+y7],[ x+y8,  x+y9, x+y10, x+y11]][[ y0+x,  y1+x,  y2+x,  y3+x],[ y4+x,  y5+x,  y6+x,  y7+x],[ y8+x,  y9+x, y10+x, y11+x]][[ x-y0,  x-y1,  x-y2,  x-y3],[ x-y4,  x-y5,  x-y6,  x-y7],[ x-y8,  x-y9, x-y10, x-y11]][[ y0-x,  y1-x,  y2-x,  y3-x],[ y4-x,  y5-x,  y6-x,  y7-x],[ y8-x,  y9-x, y10-x, y11-x]][[ -y0,  -y1,  -y2,  -y3],[ -y4,  -y5,  -y6,  -y7],[ -y8,  -y9, -y10, -y11]][[ x*y0,  x*y1,  x*y2,  x*y3],[ x*y4,  x*y5,  x*y6,  x*y7],[ x*y8,  x*y9, x*y10, x*y11]]

一个完整示例

带资源上限约束的二分匹配问题(也称为加权二分匹配问题或指派问题)是图论中的一个经典问题,它的目的是在二分图中找到最优的匹配,使得匹配的总权重最大,同时不超过给定的资源上限。
线性数学建模如下:
image.png
向量形式:
image.png
代码建模如下,可复制在云上平台直接运行:

########################################
#
#   向量式建模案例
#   Weighted Bipartite Matching
#
######################################### 1.读取权重及损耗矩阵
param W  = read_csv("weight.data");
param C  = read_csv("cost.data");param m = W.row;
param n = W.col;############## 2.问题建模 ###############
# 定义矩阵形式变量X,表示可行的匹配
var X(m, n) binary; # 3.二分匹配问题建模
maximize sum(W.*X);# A集合的资源上限约束
s.t. (C.*X)*ones(n,1) <= 10;
# B集合的资源上限约束
s.t. ones(1,m)*(C.*X) <= 10;# 集合A中每个节点最多匹配一次
s.t. X * ones(n, 1) <= 1;
# 集合B中每个节点最多匹配一次
s.t. ones(1, m) * X <= 1;############## 问题求解 #################
# 3.调用mindopt求解
option solver mindopt;
solve;############## 结果分析 #################
# 输出最优目标函数值
param obj = sum(W.*X);
print "Optimal obj is: {:.2f}" % obj;# 输出最优匹配
print "Optimal X is";
print X;
#######################################

输出结果如下:

Running mindoptampl
wantsol=1
MindOpt Version 1.0.1 (Build date: 20231114)
Copyright (c) 2020-2023 Alibaba Cloud.Start license validation (current time : 05-FEB-2024 10:34:07).
License validation terminated. Time : 0.008sModel summary.- Num. variables     : 50- Num. constraints   : 30- Num. nonzeros      : 200- Num. integer vars. : 50- Bound range        : [1.0e+00,1.0e+01]- Objective range    : [4.0e-01,9.8e+00]Branch-and-cut method started.
Original model: nrow = 30 ncol = 50 nnz = 200
Tolerance: primal = 1e-06 int = 1e-06 mipgap = 0.0001 mipgapAbs = 1e-06
Limit: time = 1.79769313486232e+308 node = -1 stalling = -1 solution = -1
presolver terminated; took 1 ms
presolver terminated; took 3 ms
Parallelism: root=8, tree=10accept new sol: obj 0 bnd vio 0 int vio 0 mipgap inf time 0accept new sol: obj -42.8999996185303 bnd vio 0 int vio 0 mipgap 4.55011660905533 time 0
Model summary.- Num. variables     : 48- Num. constraints   : 15- Num. nonzeros      : 96- Bound range        : [1.0e+00,1.0e+00]- Objective range    : [4.0e-01,9.8e+00]- Matrix range       : [1.0e+00,1.0e+00]Presolver started.
Presolver terminated. Time : 0.002sSimplex method started.
Model fingerprint: ==gZ3Fmb392Y3JmZIteration       Objective       Dual Inf.     Primal Inf.     Time0    -2.38100e+02      0.0000e+00      8.1000e+01     0.03s  6    -4.29000e+01      0.0000e+00      0.0000e+00     0.03s  
Postsolver started.
Simplex method terminated. Time : 0.007sRoot relaxation: -42.8999996185303 iteration = 6 time = 0.03
Branch-and-cut method terminated. Time : 0.548sOPTIMAL; objective 42.90Completed.Optimal obj is: 42.90
Optimal Matching X is
[[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 1, 0, 0]]

完整案例介绍:案例1:加权二分匹配(Weighted Bipartite Matching)
详细语法:向量化建模

结论:

MAPL作为一种先进的建模语言,通过支持向量和矩阵的声明以及丰富的运算操作符和映射函数,为用户处理多维数据提供了强大的工具集。无论是在学术研究还是工业应用中,MAPL的这些特点都显著地提高了数学建模的效率和便捷性。

这篇关于MindOpt APL向量化建模语法的介绍与应用(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900320

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima