LeetCode-Java:303、304区域检索(前缀和)

2024-04-13 13:52

本文主要是介绍LeetCode-Java:303、304区域检索(前缀和),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 题目
      • 303、区域和检索(数组不可变)
      • 304、二维区域和检索(矩阵不可变)
      • ①303,一维前缀和
      • ②304,二维前缀和
    • 算法
      • 前缀和
        • 一维前缀和
        • 二维前缀和

题目

303、区域和检索(数组不可变)

给定一个整数数组 nums,处理以下类型的多个查询:

  1. 计算索引 leftright (包含 leftright)之间的 nums 元素的 ,其中 left <= right

实现 NumArray 类:

  • NumArray(int[] nums) 使用数组 nums 初始化对象
  • int sumRange(int i, int j) 返回数组 nums 中索引 leftright 之间的元素的 总和 ,包含 leftright 两点(也就是 nums[left] + nums[left + 1] + ... + nums[right] )

示例 1:

输入:
["NumArray", "sumRange", "sumRange", "sumRange"]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1)) 
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))

304、二维区域和检索(矩阵不可变)

给定一个二维矩阵 matrix,以下类型的多个请求:

  • 计算其子矩形范围内元素的总和,该子矩阵的 左上角(row1, col1)右下角(row2, col2)

实现 NumMatrix 类:

  • NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
  • int sumRegion(int row1, int col1, int row2, int col2) 返回 左上角 (row1, col1)右下角 (row2, col2) 所描述的子矩阵的元素 总和

示例 1:

在这里插入图片描述

输入: 
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出: 
[null, 8, 11, 12]解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)

①303,一维前缀和

class Solution {public int[] productExceptSelf(int[] nums) {int len=nums.length;int[] answer=new int[len];answer[0]=1;for(int i=1;i<len;i++){answer[i]=nums[i-1]*answer[i-1];}int R=nums[len-1]; // R存储右侧所有元素乘积for (int i = len - 2; i >= 0; i--) {answer[i] = answer[i] * R;R=R*nums[i];}return answer;}
}

②304,二维前缀和

class NumMatrix {int[][] sum;public NumMatrix(int[][] matrix) {int m=matrix.length,n=matrix[0].length;sum=new int[m+1][n+1];for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+matrix[i-1][j-1];}}}public int sumRegion(int row1, int col1, int row2, int col2) {return sum[row2+1][col2+1]-sum[row1][col2+1]-sum[row2+1][col1]+sum[row1][col1];}
}

算法

前缀和

前缀和是一种常见的算法技巧,用于快速计算数组中某个区间内元素的和,通常用于优化处理大量的区间求和问题,比如给定一个数组,询问其中某个连续区间内元素的和。

算法原理: 前缀和的核心思想是通过对数组进行预处理,计算出从数组开头到每个位置的元素累加和,然后利用这些预先计算好的累加和,在O(1)时间内求出任意区间的和。假设给定数组为A,其前缀和数组为prefix,其中prefix[i]表示数组A从0到i的元素和。

一维前缀和

假设给定数组为A = [1, 2, 3, 4, 5],其前缀和数组为prefix = [1, 3, 6, 10, 15]。

但在①②中,A数组的前缀和应当为prefix = [0,1, 3, 6, 10, 15],比原数组要多一个。

在计算任意区间的和时,通过在前缀和数组中添加0,可以统一处理起始位置为0的边界情况,无需单独考虑。例如,对于查询区间[0, 3],直接使用prefix[3]即可得到结果,无需特殊处理。

具体使用的时候建议用草稿纸绘制相关的数组或者矩阵的图形,进行检验。

二维前缀和

二维的前缀和更为复杂,

A = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]

prefix = [ [1, 3, 6], [5, 12, 21], [12, 27, 45] ]

prefix[i] [j] = A[i] [j] + prefix[i-1] [j] + prefix[i] [j-1] - prefix[i-1] [j-1]

可以用下图帮助理解(图源LeetCode:负雪明烛):

至于输出的公式,也类似于上面的用右下角位置加上左上角-1的位置减去区域右上角和左下角:

area=sum[row2+1] [col2+1]-sum[row1] [col2+1]-sum[row2+1] [col1]+sum[row1] [col1](为了方便书写代码,实际矩阵比原矩阵大一圈,所以这里所有的加减都在原矩阵基础上+1)

这篇关于LeetCode-Java:303、304区域检索(前缀和)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900314

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S