POJ - 2486 :Apple Tree 树上有依赖背包

2024-04-13 13:18

本文主要是介绍POJ - 2486 :Apple Tree 树上有依赖背包,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门

题目描述

一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走k步,最多能遍历到的权值。

分析

首先我们可以去dfs每一个为为根节点的时候,子树走 k k k步的时候的最大权值,但这里涉及到一位问题,因为每一条边可以重复走,所以会不会有回头的情况
我们用 f [ i ] [ j ] [ 0 / 1 ] f[i][j][0/1] f[i][j][0/1]表示在 i i i点的时候,走 k k k步,是否返回 i i i节点的情况下所能获得的最大权值,然去去状态转移就可以了

  • 如果返回 u u u点,那么
    f [ u ] [ j + 2 ] [ 1 ] = m a x ( f [ u ] [ j + 2 ] [ 1 ] , f [ u ] [ j − k ] [ 1 ] + f [ v ] [ k ] [ 1 ] ) ; f[u][j + 2][1] = max(f[u][j + 2][1],f[u][j - k][1] + f[v][k][1]); f[u][j+2][1]=max(f[u][j+2][1],f[u][jk][1]+f[v][k][1]);
  • 如果不返回 u u u点,停留在子树中
    f [ u ] [ j + 1 ] [ 0 ] = m a x ( f [ u ] [ j + 1 ] [ 0 ] , f [ u ] [ j − k ] [ 1 ] + f [ v ] [ k ] [ 0 ] ) ; f[u][j + 1][0] = max(f[u][j + 1][0],f[u][j - k][1] + f[v][k][0]); f[u][j+1][0]=max(f[u][j+1][0],f[u][jk][1]+f[v][k][0]);
  • 如果不返回 u u u点,不停留在子树中
    f [ u ] [ j + 2 ] [ 0 ] = m a x ( f [ u ] [ j + 2 ] [ 0 ] , f [ u ] [ j − k ] [ 0 ] + f [ v ] [ k ] [ 1 ] ) ; f[u][j + 2][0] = max(f[u][j + 2][0],f[u][j - k][0] + f[v][k][1]); f[u][j+2][0]=max(f[u][j+2][0],f[u][jk][0]+f[v][k][1]);

代码

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>using namespace std;const int N = 500,M = N;
int h[N],ne[M],e[M],idx;
int a[N];
int f[N][N][2];
int n,li;void add(int x,int y){ne[idx] = h[x],e[idx] = y,h[x] = idx++;
}void dfs(int u,int fa){for(int i = 0;i <= li;i++) f[u][i][0] = f[u][i][1] = a[u];for(int i = h[u];~i;i = ne[i]){int v = e[i];if(v == fa) continue;dfs(v,u);for(int j = li;j >= 0;j--)for(int k = 0;k <= j;k++){f[u][j + 2][1] = max(f[u][j + 2][1],f[u][j - k][1] + f[v][k][1]);f[u][j + 1][0] = max(f[u][j + 1][0],f[u][j - k][1] + f[v][k][0]);f[u][j + 2][0] = max(f[u][j + 2][0],f[u][j - k][0] + f[v][k][1]);}}
}int main(){while(~scanf("%d%d",&n,&li)){memset(h,-1,sizeof h);idx = 0;for(int i = 1;i <= n;i++) scanf("%d",&a[i]);for(int i = 1;i < n;i++){int x,y;scanf("%d%d",&x,&y);add(x,y),add(y,x);}memset(f,0,sizeof f);dfs(1,-1);printf("%d\n",max(f[1][li][1],f[1][li][0]));}return 0;
}

这篇关于POJ - 2486 :Apple Tree 树上有依赖背包的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900246

相关文章

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Spring-DI依赖注入全过程

《Spring-DI依赖注入全过程》SpringDI是核心特性,通过容器管理依赖注入,降低耦合度,实现方式包括组件扫描、构造器/设值/字段注入、自动装配及作用域配置,支持灵活的依赖管理与生命周期控制,... 目录1. 什么是Spring DI?2.Spring如何做的DI3.总结1. 什么是Spring D

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java -jar命令如何运行外部依赖JAR包

《Java-jar命令如何运行外部依赖JAR包》在Java应用部署中,java-jar命令是启动可执行JAR包的标准方式,但当应用需要依赖外部JAR文件时,直接使用java-jar会面临类加载困... 目录引言:外部依赖JAR的必要性一、问题本质:类加载机制的限制1. Java -jar的默认行为2. 类加

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb