POJ - 2486 :Apple Tree 树上有依赖背包

2024-04-13 13:18

本文主要是介绍POJ - 2486 :Apple Tree 树上有依赖背包,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门

题目描述

一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走k步,最多能遍历到的权值。

分析

首先我们可以去dfs每一个为为根节点的时候,子树走 k k k步的时候的最大权值,但这里涉及到一位问题,因为每一条边可以重复走,所以会不会有回头的情况
我们用 f [ i ] [ j ] [ 0 / 1 ] f[i][j][0/1] f[i][j][0/1]表示在 i i i点的时候,走 k k k步,是否返回 i i i节点的情况下所能获得的最大权值,然去去状态转移就可以了

  • 如果返回 u u u点,那么
    f [ u ] [ j + 2 ] [ 1 ] = m a x ( f [ u ] [ j + 2 ] [ 1 ] , f [ u ] [ j − k ] [ 1 ] + f [ v ] [ k ] [ 1 ] ) ; f[u][j + 2][1] = max(f[u][j + 2][1],f[u][j - k][1] + f[v][k][1]); f[u][j+2][1]=max(f[u][j+2][1],f[u][jk][1]+f[v][k][1]);
  • 如果不返回 u u u点,停留在子树中
    f [ u ] [ j + 1 ] [ 0 ] = m a x ( f [ u ] [ j + 1 ] [ 0 ] , f [ u ] [ j − k ] [ 1 ] + f [ v ] [ k ] [ 0 ] ) ; f[u][j + 1][0] = max(f[u][j + 1][0],f[u][j - k][1] + f[v][k][0]); f[u][j+1][0]=max(f[u][j+1][0],f[u][jk][1]+f[v][k][0]);
  • 如果不返回 u u u点,不停留在子树中
    f [ u ] [ j + 2 ] [ 0 ] = m a x ( f [ u ] [ j + 2 ] [ 0 ] , f [ u ] [ j − k ] [ 0 ] + f [ v ] [ k ] [ 1 ] ) ; f[u][j + 2][0] = max(f[u][j + 2][0],f[u][j - k][0] + f[v][k][1]); f[u][j+2][0]=max(f[u][j+2][0],f[u][jk][0]+f[v][k][1]);

代码

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>using namespace std;const int N = 500,M = N;
int h[N],ne[M],e[M],idx;
int a[N];
int f[N][N][2];
int n,li;void add(int x,int y){ne[idx] = h[x],e[idx] = y,h[x] = idx++;
}void dfs(int u,int fa){for(int i = 0;i <= li;i++) f[u][i][0] = f[u][i][1] = a[u];for(int i = h[u];~i;i = ne[i]){int v = e[i];if(v == fa) continue;dfs(v,u);for(int j = li;j >= 0;j--)for(int k = 0;k <= j;k++){f[u][j + 2][1] = max(f[u][j + 2][1],f[u][j - k][1] + f[v][k][1]);f[u][j + 1][0] = max(f[u][j + 1][0],f[u][j - k][1] + f[v][k][0]);f[u][j + 2][0] = max(f[u][j + 2][0],f[u][j - k][0] + f[v][k][1]);}}
}int main(){while(~scanf("%d%d",&n,&li)){memset(h,-1,sizeof h);idx = 0;for(int i = 1;i <= n;i++) scanf("%d",&a[i]);for(int i = 1;i < n;i++){int x,y;scanf("%d%d",&x,&y);add(x,y),add(y,x);}memset(f,0,sizeof f);dfs(1,-1);printf("%d\n",max(f[1][li][1],f[1][li][0]));}return 0;
}

这篇关于POJ - 2486 :Apple Tree 树上有依赖背包的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/900246

相关文章

Maven 依赖发布与仓库治理的过程解析

《Maven依赖发布与仓库治理的过程解析》:本文主要介绍Maven依赖发布与仓库治理的过程解析,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录Maven 依赖发布与仓库治理引言第一章:distributionManagement配置的工程化实践1

Spring三级缓存解决循环依赖的解析过程

《Spring三级缓存解决循环依赖的解析过程》:本文主要介绍Spring三级缓存解决循环依赖的解析过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、循环依赖场景二、三级缓存定义三、解决流程(以ServiceA和ServiceB为例)四、关键机制详解五、设计约

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Maven如何手动安装依赖到本地仓库

《Maven如何手动安装依赖到本地仓库》:本文主要介绍Maven如何手动安装依赖到本地仓库问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载依赖二、安装 JAR 文件到本地仓库三、验证安装四、在项目中使用该依赖1、注意事项2、额外提示总结一、下载依赖登

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并