【IR-SDE】Image Restoration SDE项目演示运行app.py

2024-04-13 03:44

本文主要是介绍【IR-SDE】Image Restoration SDE项目演示运行app.py,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:

code:GitHub - Algolzw/image-restoration-sde: Image Restoration with Mean-Reverting Stochastic Differential Equations, ICML 2023. Winning solution of the NTIRE 2023 Image Shadow Removal Challenge.

paper:

Official PyTorch Implementations of [IR-SDE](ICML 2023) and [Refusion](CVPRW 2023).

在Rain100H图像去雨数据集上获得SOTA,其中IR-SDE和DA-CLIP都是该团队的。 

 IR-SDE数值上比Restormer略高,当时获得SOTA

 暂时没细看论文先贴一下摘要

Image Restoration with Mean-Reverting Stochastic Differential Equations

提出了一种通用图像复原的随机微分方程(SDE)方法。关键构造是一个均值恢复的SDE,将高质量图像转换为具有固定高斯噪声的均值状态的降质图像。然后,通过模拟相应的逆时SDE,能够恢复低质量图像的来源,而不依赖任何特定于任务的先验知识。至关重要的是,所提出的恢复均值的SDE有一个闭式解决方案,允许我们计算基本真值依赖于时间的分数,并用神经网络学习它。提出了一个最大似然目标来学习一个最优的反向轨迹,以稳定训练并提高恢复结果。实验表明,所提出的方法在图像去模糊、去模糊和去噪的定量比较中取得了极具竞争力的性能,在两个去模糊数据集上取得了新的先进水平。最后,在图像超分辨率、修复和去雾等方面的定性实验结果进一步证明了本文方法的普遍适用性。

Refusion: Enabling Large-Size Realistic Image Restoration with Latent-Space Diffusion Models

该工作旨在提高扩散模型在真实感图像复原中的适用性。从网络结构、噪声水平、去噪步骤、训练图像大小和优化器/调度器等几个方面增强了扩散模型。调优这些超参数可以在失真和感知分数上取得更好的性能。本文还提出了一种基于U-Net的潜扩散模型,在低分辨率潜空间中进行扩散,同时为解码过程保留原始输入的高分辨率信息。与之前训练VAE-GAN压缩图像的潜扩散模型相比,所提出的U-Net压缩策略明显更加稳定,可以在不依赖对抗优化的情况下恢复高精度的图像。重要的是,这些修改使我们能够将扩散模型应用于各种图像恢复任务,包括真实世界的阴影去除、HR非均匀去雾、立体超分辨率和散景效果转换。通过简单地替换数据集并略微改变噪声网络,我们的模型Refusion能够处理大尺寸图像(例如,6000 x 4000 x 3的HR去雾),并在所有上述恢复问题上产生良好的结果。我们的再融合在NTIRE 2023图像阴影去除挑战中取得了最佳的感知性能,并赢得了第二名。

 本文目标:

按照readme实现IR-SDE的演示运行/codes/config/drain/app.py。

Dependenices

使用之前的 DA-CLIP 项目虚拟环境,DA-CLIP中的复原模型与IR-SDE基本相同,运行没有环境报错。

运行前you need to download the pretrained weights and modify the model path in options/test/ir-sde.yml.

预训练权重地址

修改地址

#### path
path:pretrain_model_G: E:\daclip\pretrained\rain100h_sde.pth

IndexError: list index out of range

源代码运行在Ubuntu。 我写的Windows下的绝对路径,没有”/“所以划分报错,改为”\\“或者直接使用path都可以。记得改的是对应derain项目下的yml。

    config_dir = path

app.py代码就不讲了,和DA-CLIP里的代码类似。另外找时间整理一下model和IRSDE类之间的函数参数传递和复原过程代码。 

运行结果 

按钮是中文因为改了Gradio包代码,详细内容看我另一篇博文。 修改Gradio按钮中文 

提供了 单帧超分辨率SISR 、图像修复、图像去雨、图像去噪、图像去模糊对应模型权重,感兴趣可以去试一下其他的

这篇关于【IR-SDE】Image Restoration SDE项目演示运行app.py的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/899054

相关文章

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

idea+spring boot创建项目的搭建全过程

《idea+springboot创建项目的搭建全过程》SpringBoot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目,:本文主要介绍idea+springb... 目录一.idea四种搭建方式1.Javaidea命名规范2JavaWebTomcat的安装一.明确tomcat

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

MyCat分库分表的项目实践

《MyCat分库分表的项目实践》分库分表解决大数据量和高并发性能瓶颈,MyCat作为中间件支持分片、读写分离与事务处理,本文就来介绍一下MyCat分库分表的实践,感兴趣的可以了解一下... 目录一、为什么要分库分表?二、分库分表的常见方案三、MyCat简介四、MyCat分库分表深度解析1. 架构原理2. 分

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日

在.NET项目中嵌入Python代码的实践指南

《在.NET项目中嵌入Python代码的实践指南》在现代开发中,.NET与Python的协作需求日益增长,从机器学习模型集成到科学计算,从脚本自动化到数据分析,然而,传统的解决方案(如HTTPAPI或... 目录一、CSnakes vs python.NET:为何选择 CSnakes?二、环境准备:从 Py

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca