TR4 - Transformer中的多头注意力机制

2024-04-13 01:28

本文主要是介绍TR4 - Transformer中的多头注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


目录

  • 前言
  • 自注意力机制
    • Self-Attention层的具体机制
    • Self-Attention 矩阵计算
  • 多头注意力机制
    • 例子解析
  • 代码实现
  • 总结与心得体会


前言

多头注意力机制可以说是Transformer中最主要的模块,没有之一。这次我们来仔细分析一下注意力机制与多头注意力机制。

自注意力机制

在Transformer模型中,输入的文本序列经过输入处理转换为一个向量的序列,然后就会被送到第1层的编码器,第一层的编码器的输出同样是一个向量的序列,再送到下一层编码器。
encoder向量流动
通过上图可以发现,向量在层间流动时,向量的数量和维度都是不变的。单层编码器接收到上一层的输入,然后进入自注意力层计算,然后再输入到前馈神经网络中,最后得到每个位置的新向量。

Self-Attention层的具体机制

例如想要翻译的句子为:“The animal didn’t cross the street because it was too tired”。

句子中的it是一个代词,想要知道它具体代指什么,对模型来说并不容易。通过引用Self-Attention机制,模型就会最终计算出it代指的是animal。同样的,当模型处理句子中其他词时,Self-Attention机制也可以让模型不仅仅关注当前位置的词,还关注句中其它位置相关的词,进而更好地理解当前位置的词。

通过一个简单的例子来解释自注意力机制的计算过程:假设一句话为"Thinking Machines"。

自注意力会计算:Thinking-Thinking、Thinking-Machines、Machines-Thinking、Machines-Machines共2的2次方种组合。

具体的计算过程如下:

  • 1 对输入编码器的词向量进行线性变换,得到Query、Key和Value向量。变换的过程是通过词向量分别和3个参数矩阵相乘,参数矩阵可以通过模型训练学习到。

向量计算

  • 2 计算 Attention Score (注意力分数 )。

假如我们现在计算Thinking的Attention Score,需要根据Thinking对应的词向量,对句子中的其他词向量都计算一个分数,这些分数决定了在编码Thinking这个词时,对句子中其它位置的词向量的权重。

Attention Score 是根据Thinking对应的Query向量和其他位置的每个词的Key向量进行点积得到的。Thinking的第一个Attention Score 就是q1和k1的点积,第二个分数是 q 1 q_1 q1 k 2 k_2 k2的点积。
Attention Score计算

  • 3 把得到的每个分数除以 d k \sqrt{d_k} dk d k d_k dk是Key向量的维度。这一步的目的是为了在反向传播时,求梯度时更加稳定。

s c o r e 11 = q 1 ⋅ k 1 d k score_{11} = \frac{q_1 \cdot k_1}{\sqrt{d_k}} score11=dk q1k1

s c o r e 12 = q 1 ⋅ k 2 d k score_{12} = \frac{q_1 \cdot k_2}{\sqrt{d_k}} score12=dk q1k2

  • 4 然后把分数经过一个Softmax函数,通过Softmax将分数归一化,使分数都是正数并且加起来等于1。

s c o r e 11 = s o f t m a x ( s c o r e 11 ) score_{11} = softmax(score_{11}) score11=softmax(score11)

s c o r e 12 = s o f t m a x ( s c o r e 12 ) score_{12} = softmax(score_{12}) score12=softmax(score12)

Softmax 计算Score

  • 5 得到每个词向量的分数后,将分数分别与对应的Value向量相乘。对于分数高的位置,相乘后的值就越大,我们把更多的注意力放到了它们的身上;对于分数低的位置,相乘后的值就越小,这些位置的词可能就相关性不大。
    计算sum
  • 6 把第5步得到的Value向量相加,就得到了Self-Attention在当前位置对应的输出

z 1 = v 1 × s c o r e 11 + v 2 × s c o r e 12 z_1 = v_1 \times score_{11} + v_2 \times score_{12} z1=v1×score11+v2×score12

最后整体看一下Self-Attention计算的全过程

Self-Attention全过程

Self-Attention 矩阵计算

具体的实现时,并不会像上面那样阶段分明的分成6个步骤,而是将向量合并到一起,进行矩阵运算。

X 1 X_1 X1: 第一个单词的输入向量
X 2 X_2 X2: 第二个单词的输入向量
X = [ X 1 ; X 2 ] X = [X_1;X_2] X=[X1;X2] 将两个向量合并为矩阵

具体来说分为了两步:

  • 1:计算Query、Key、Value的矩阵。

    Q = X W Q Q = XW^Q Q=XWQ:计算Query

    K = X W K K = XW^K K=XWK:计算Key

    V = X W V V = XW^V V=XWV:计算Value

    把所有的词向量放到一个矩阵X中,然后分别和3个权重矩阵 W Q W^Q WQ W K W^K WK W V W^V WV相乘,得到 Q Q Q K K K V V V矩阵。矩阵X中的每一行,表示句子中的每一个词的词向量。 Q Q Q K K K V V V矩阵中的每一行表示Query向量、Key向量、Value向量,向量的维度是 d k d_k dk

    QKV矩阵乘法

  • 2:矩阵计算把上面第2步到第6步压缩为一步,直接得到Self-Attention的输出

    Z = s o f t m a x ( Q K T d k ) × V Z = softmax(\frac {QK^T} {\sqrt{d_k}}) \times V Z=softmax(dk QKT)×V

    计算Z

多头注意力机制

Transformer的论文中,通过增加多头注意力机制(一组注意力称为一个Attention Head),进一步完善了Self-Attention。这种机制从如下两个方面增强了Attention层的能力:

  • 扩展了模型关注不同位置的能力

    在上面的例子中,第一个位置的输出 z 1 z_1 z1包含了句子中其他每个位置的很小一部分信息。但 z 1 z_1 z1仅仅是单个向量,所以可能仅由第1个位置的信息主导了。而当我们翻译句子:The animal didn't cross the street because it was too tired时,我们不仅希望模型关注到it本身,还希望模型关注到Theanimal,甚至关注到tired

  • 多头注意力机制赋予了Attention层多个“子表示空间”

    多头注意力机制会有多组 W Q W^Q WQ W K W^K WK W V W^V WV的权重矩阵,因此可以将 X X X变换到更多种子空间中进行表示 。
    多头注意力机制
    每组注意力设定单独的 W Q W^Q WQ W K W^K WK W V W^V WV参数矩阵。将输入 X X X与它们相乘,得到多组 Q Q Q K K K V V V矩阵。接下来把每组的 Q Q Q K K K V V V计算得到各自的 Z Z Z
    Z矩阵计算
    由于前馈神经网络层接收的是1个矩阵(其中每行的向量表示一个词),而不是8个矩阵,所以要直接把8个子矩阵拼接得到一个大矩阵,然后和另一个权重矩阵 W O W^O WO相乘做一次变换,映射到前馈神经网络层所需要的维度。
    子矩阵映射变换
    把多头注意力放到一张图中:
    多头注意力机制运算

例子解析

再来看一下上面提到的it的例子,不同的Attention Heads对应的it attention了哪些内容。
It的Attention
图中绿色和橙色线条分别表示2组不同的Attention Heads。可以看到,当我们编码单词it时,其中一个Attention Head(橙色)最关注的是the animal,另外一个绿色Attention Head关注的是tired。因此在某种意义上,it在模型中的表示,融合了animaltire的部分表达。

代码实现

class MultiHeadAttention(nn.Module):def __init__(self, hid_dim, n_heads, dropout):super().__init__()self.hid_dim = hid_dimself.n_heads = n_heads# hid_dim必须整除assert hid_dim % n_heads == 0# 定义wqself.w_q = nn.Linear(hid_dim, hid_dim)# 定义wkself.w_k = nn.Linear(hid_dim, hid_dim)# 定义wvself.w_v = nn.Linear(hid_dim, hid_dim)self.fc = nn.Linear(hid_dim, hid_dim)self.do = nn.Dropout(dropout)self.scale = torch.sqrt(torch.FloatTensor([hid_dim//n_heads]))def forward(self, query, key, value, mask=None):# Q与KV在句子长度这一个维度上数值可以不一样bsz = query.shape[0]Q = self.w_q(query)K = self.w_k(key)V = self.w_v(value)# 将QKV拆成多组,方案是将向量直接拆开了# (64, 12, 300) -> (64, 12, 6, 50) -> (64, 6, 12, 50)# (64, 10, 300) -> (64, 10, 6, 50) -> (64, 6, 10, 50)# (64, 10, 300) -> (64, 10, 6, 50) -> (64, 6, 10, 50)Q = Q.view(bsz, -1, self.n_heads, self.hid_dim//self.n_heads).permute(0, 2, 1, 3)K = K.view(bsz, -1, self.n_heads, self.hid_dim//self.n_heads).permute(0, 2, 1, 3)V = V.view(bsz, -1, self.n_heads, self.hid_dim//self.n_heads).permute(0, 2, 1, 3)# 第1步,Q x K / scale# (64, 6, 12, 50) x (64, 6, 50, 10) -> (64, 6, 12, 10)attention = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale# 需要mask掉的地方,attention设置的很小很小if mask is not None:attention = attention.masked_fill(mask == 0, -1e10)# 第2步,做softmax 再dropout得到attentionattention = self.do(torch.softmax(attention, dim=-1))# 第3步,attention结果与k相乘,得到多头注意力的结果# (64, 6, 12, 10) x (64, 6, 10, 50) -> (64, 6, 12, 50)x = torch.matmul(attention, V)# 把结果转回去# (64, 6, 12, 50) -> (64, 12, 6, 50)x = x.permute(0, 2, 1, 3).contiguous()# 把结果合并# (64, 12, 6, 50) -> (64, 12, 300)x = x.view(bsz, -1, self.n_heads * (self.hid_dim // self.n_heads))x = self.fc(x)return x        

测试一下是否能输出

query = torch.rand(64, 12, 300)
key = torch.rand(64, 10, 300)
value = torch.rand(64, 10, 300)
attention = MultiHeadAttention(hid_dim=300, n_heads=6, dropout=0.1)
output = attention(query, key, value)
print(output.shape)

输出

总结与心得体会

通过对多头注意力机制的学习,有一个让我印象深刻的地方就是,它的多头注意力机制不是像其它模块设计思路一样,对同一个输入做了多组运算,而是将输入切分成不同的部分,每部分分别做了多组运算。由于自然语言处理中,一个单词的词向量往往是很长的,所以这种方式比CV的那种堆叠的方式能减少很多计算量,并且在效果方面不会损失太多。

个人感觉:词向量的不同分组之间的关系有点像计算机视觉中,彩色图像的多个通道,多头注意力机制有点像后面的通道注意力的计算。

这篇关于TR4 - Transformer中的多头注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898777

相关文章

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class