0基础刷图论最短路 1(从ATcoder 0分到1800分)

2024-04-12 09:52

本文主要是介绍0基础刷图论最短路 1(从ATcoder 0分到1800分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ATC最短路1 (本文难度rated 0~ 1000)

题目来源:Atcoder
题目收集:
https://atcoder-tags.herokuapp.com/tags/Graph/Shortest-Path
(里面按tag分类好了Atcoder的所有题目,类似cf)
(访问需要魔法)
这算是一个题单,各位有兴趣可以按照这个顺序来刷。
我的代码仅供参考。
会提示关键性质和步骤。 部分有注释。
洛谷、知乎、可以搜到题解。

文章目录

  • ATC最短路1 (本文难度rated 0~ 1000)
    • 1-**Hands**
    • 2- **Cat Snuke and a Voyage**
    • 3-**Collision** https://atcoder.jp/contests/abc209/tasks/abc209_d
    • 4-**友達の友達**
    • **5-Line++**
    • 6-**Range Flip Find Route**
    • 7- Wall
    • 8-**Our clients, please wait a moment**

1-Hands

https://atcoder.jp/contests/arc109/tasks/arc109_a

思维 / 最短路板子(一道atc的负分题)

这题比下面那些800多的难多了…

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define INF 1e18void slove(){int a,b,x,y;cin>>a>>b>>x>>y;int ans = 0;if(a>b){if(2*x>=y){ //如果直接下楼更方便:ans = (a-b-1)*y + x;}else{ans = (a-b-1)*2*x + x;}}else if(a==b){ans = x;}else{if(2*x>=y){ans = (b-a)*y+x;}else{ans = (b-a)*2*x+x;}}cout<<ans<<endl;
}signed main(){slove();
}

2- Cat Snuke and a Voyage

https://atcoder.jp/contests/abc068/tasks/arc079_a

最短路

弱智题…这种题在atc里居然 rate 609????

最短路都不需要跑…

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define INF 1e18void slove(){int n,m;cin>>n>>m;vector<vector<int>> g(n+1);for(int i=1;i<=m;i++){int u,v;cin>>u>>v;g[u].push_back(v);g[v].push_back(u);}for(auto i:g[1]){for(auto j:g[i]){if(i==n or j==n){cout<<"POSSIBLE"<<endl;return;}}}cout<<"IMPOSSIBLE"<<endl;
}signed main(){slove();
}

3-Collision https://atcoder.jp/contests/abc209/tasks/abc209_d

思维

有点意思

/*
当两个城镇的距离是偶数,说明是在城镇相遇
否则在半路相遇。问题是,如何求出任意两个城镇的距离?
这个问题,在N = 1e5的时候是无解的。所以,我们考虑,如何知道这两个城镇的最短距离是否为偶数?
(一个很重要的能力:根据数据范围判断算法)
(树图常见操作:染色)这个问题可以转换为:
对于每个点,我们给与其相邻的所有点涂上不同的颜色。
因为相邻的话,距离是1,是奇数。然后任意两个点,我们只需要观察是否为同一颜色。
如果它们是同一颜色,说明间距是偶数。*/#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define INF 1e18
const int N = 1e5+7;vector<vector<int>> g(N);
int color[N];void get_color(int u,int fa){for(auto v:g[u]){if(v==fa)continue;color[v] = 1 - color[u];get_color(v,u);}
}
void slove(){int n,q;cin>>n>>q;for(int i=1;i<=n-1;i++){int u,v;cin>>u>>v;g[u].push_back(v);g[v].push_back(u);}get_color(1,-1);while(q--){int u,v;cin>>u>>v;if(color[u]==color[v])cout<<"Town"<<endl;else cout<<"Road"<<endl;}
}signed main(){slove();
}

4-友達の友達

https://atcoder.jp/contests/abc016/tasks/abc016_3

这特么跟最短路有什么关系。

这不是暴力吗?

/*
找到每个点朋友的朋友个数。一共有N个人。对于1.
我们需要标记1的所有儿子。
然后再从1的第一个儿子开始,遍历1的第一个儿子的所有儿子
如果没被标记,那么标记,答案+1然后1算完了话,再重新清空标记,去计算2N<10*/#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define INF 1e18
int n,m;
vector<vector<int>> g(11);
int f[11];
void todo(int id){vector<int> flag(n+1);for(auto v:g[id]){flag[v]=1;}for(auto v:g[id]){for(auto k:g[v]){if(k==id)continue;if(flag[k])continue;flag[k]=1;f[id]++;}}
}void slove(){cin>>n>>m;for(int i=1;i<=m;i++){int u,v;cin>>u>>v;g[u].push_back(v);g[v].push_back(u);}for(int i=1;i<=n;i++){todo(i);}for(int i=1;i<=n;i++){cout<<f[i]<<endl;}
}signed main(){slove();
}

5-Line++

https://atcoder.jp/contests/abc160/tasks/abc160_d

水题

/*
给定一个图。
有N个顶点
每个i = 1,2...,N-1 ,都有 i 与 i+1 连一条边。也就是,这其实是一条链子。然后我们在选两个点,x,y
在他们之间连接一个边。现在问你在这幅图中,任意(i,j)之间的最短距离为k的整数对有多少?K取遍1~n-1N的取值范围是 1e3,所以我们可以n^2 求解每两个点之间的距离。所以,任意两个点之间的距离:
1、走直道: j-i
2、走弯道: |x-i| + 1 +|j-y|*/
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define INF 1e18
const int N = 2e3+7;
int box[N];
void slove(){int n,x,y;cin>>n>>x>>y;for(int i=1;i<=n;i++){for(int j=i+1;j<=n;j++){int dist = min(abs(j-i),abs(i-x)+1+abs(j-y));box[dist]++;}}for(int i=1;i<=n-1;i++){cout<<box[i]<<endl;}}signed main(){slove();
}

6-Range Flip Find Route

https://atcoder.jp/contests/agc043/tasks/agc043_a

数字三角形模型dp

这严格意义上不是一道图论,而是一道dp。但是我在刷图论的时候遇到了,那就放过来。

这道题,说的是我们每一次操作可以选择一个任意大小的矩形(最小是1),然后将这里面的所有颜色反转。

而且每次我们只能往下走/往右走。所以引发我想起这个模型。

思考什么时候需要反转?

当$ a[i][j]==a[i-1][j] \ or \ a[i][j]==a[i][j-1] $的时候

我们的翻转次数是与上一个状态一样的。

a [ i ] [ j ] = = ′ . ′ a[i][j]=='.' a[i][j]==.的时候,这个点是不需要反转的,所以反转次数与上一个状态一样。

其他的情况,就需要反转次数+1

然后就是先处理下边界,我因为这个WA了几次

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define INF 1e18int dp[101][101];
char a[101][101];void slove(){int n,m;cin>>n>>m;for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)cin>>a[i][j];dp[1][1]=(a[1][1]=='#');for(int i=2;i<=n;i++){if(a[i][1]=='.' or a[i][1]==a[i-1][1]) dp[i][1]=dp[i-1][1];else dp[i][1] = dp[i-1][1]+1;}for(int j=2;j<=m;j++){if(a[1][j]=='.' or a[1][j]==a[1][j-1])dp[1][j]=dp[1][j-1];else dp[1][j] = dp[1][j-1]+1;}for(int i=2;i<=n;i++){for(int j=2;j<=m;j++){int tempu = dp[i-1][j]+1;int templ = dp[i][j-1]+1;if(a[i][j]=='.'){tempu = dp[i-1][j];templ = dp[i][j-1];}if(a[i][j]==a[i-1][j]){tempu = dp[i-1][j];}if(a[i][j]==a[i][j-1]){templ = dp[i][j-1];}dp[i][j]=min(templ,tempu);}}cout<<dp[n][m]<<endl;
}signed main(){slove();
}

7- Wall

https://atcoder.jp/contests/abc079/tasks/abc079_d

dijkstra / floyed

思考一个问题:当 i->j 的路径长度 不等于 j-> i 的路径长度的时候。
还能用dijkstra吗可以,不过我们要搞清楚,题目需要我们从谁走到谁?如果是求从起点到起点以外的点,那么我们正向跑一边dijkstra是没问题的。如果是要求别的点,走到起点。
那么显然我们可以通过建立反向图,再从起点跑一边dijkstra通过这个问题,我们可以发现,dij算法是不会“回头的”因为我们通过最小堆的优化,每次拓展的点都是离当前点最近的一点。
如果回头的话,就说明,从u到v,有更短的距离
也就是说,从u走别的路有更短的距离到v
例如 u -> i -> j -> v
那么,i,j 一定会比v先更新。
并且,在他们更新之后,只会通过这条路更新v,不会通过 u->v 更新v
所以,不会回头。

Dijkstra 算法

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define INF 1e18int n,m;
int dist[10];
int c[10][10];
int a[201][201];
bool flag[10];
void dijkstra(){for(int i=0;i<=9;i++)dist[i]=INF;priority_queue<PII,vector<PII>,greater<PII>> q;dist[1]=0;q.push({0,1});while(q.size()){int u = q.top().second;q.pop();if(flag[u])continue;flag[u]=1;for(int i=0;i<=9;i++){if(i==u)continue;if(dist[i]>dist[u]+c[i][u]){dist[i] = dist[u]+c[i][u];q.push({dist[i],i});}}}int ans = 0;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){if(a[i][j]!=-1)ans+=dist[a[i][j]];}}cout<<ans<<endl;
}
void slove(){cin>>n>>m;for(int i=0;i<=9;i++){for(int j=0;j<=9;j++){cin>>c[i][j];}}for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){cin>>a[i][j];}}dijkstra();}signed main(){slove();
}

floyd做法

做法2,floyed做法
用于求出当n较小的时候,图中任意两点的最小距离
时间复杂度O(n^3)有个问题就是,为什么枚举中间点的循环是放在最外面?我们的循环是这样的:for(int k=0;k<=9;k++){for(int i=0;i<=9;i++){for(int j=0;j<=9;j++){dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]);}}}如果k放在外层,k是从小到达逐渐增长的。可以发现:dist[i][k]一定在dist[i][j]之前被更新过,dist[k][j]一定在dist[i][j]之前被更新过比如说,k=3 , 而在k=0的时候,所有的dp[i][j]都被更新过一次了。我们使用的都是目前最优秀的状态。如果把k放在里面:for(int i=0;i<=9;i++){for(int j=0;j<=9;j++){for(int k=0;k<=9;k++){dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]);}}}显然,当i,j都很小的时候,k已经可以跑到9了。所以 dp[i][k] 并不会在 dp[i][j]被更新前更新。/*
把网格里面,除了-1以外的所有数
转化为1所需要的最小代价之和为多少。已经给了
如果把  i 转化为 j 的最小代价是 c[i][j]只需要跑一边最短路。
求出 i转化为1的最短路即可。*/#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define INF 1e18int dist[10][10];
int n,m;
int a[201][201];
bool flag[201];void slove(){cin>>n>>m;for(int i=0;i<=9;i++){for(int j=0;j<=9;j++){cin>>dist[i][j];}}for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)cin>>a[i][j];//floyedfor(int k=0;k<=9;k++){for(int i=0;i<=9;i++){for(int j=0;j<=9;j++){dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]);}}}int ans =0 ;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){if(a[i][j]!=-1){//求和ans+=dist[a[i][j]][1];}}}cout<<ans<<endl;}signed main(){slove();
}

8-Our clients, please wait a moment

https://atcoder.jp/contests/abc325/tasks/abc325_e

一点小思考:

有个想法:
dijkstra是求起点到所有点的最短路。那么为什么i,j的最短路不能等于
dist[j] - dist[i] 呢?
很显然的问题就是,1到j的最短路不一定经过i
如果经过i,那么这就是ok的。
/*
有N个城市
你现在要从城市1到达城市N对于城市i和城市j
可以选择乘坐汽车:花费时间:D[i][j]*A
乘坐火车 花费时间:D[i][j]*B+C对于汽车,你可以在半途中,用汽车换成火车。
但是不能由火车换成汽车。一个很简单的办法就是:先求出一遍只乘坐公车的最短路。
然后枚举每个点,开始坐火车。我们还需要去算一遍,火车的最短路。由于此时的边权是对称的。所以,我们可以从n点出发
这样可以算出火车的dist2[i]然后二者相加: dist1[i]+dist[2] =  最短距离*/#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define INF 1e18int n,a,b,c;
int d[1001][1001];
int dist[1001];
int dist2[1001];
bool flag[1001];void dijkstra(){for(int i=0;i<=n;i++)dist[i]=INF;dist[1]=0;priority_queue<PII,vector<PII>,greater<PII>> q;q.push({0,1});while(q.size()){int u = q.top().second;q.pop();if(flag[u])continue;flag[u]=1;for(int i=1;i<=n;i++){if(i==u)continue;int w = d[u][i]*a;if(dist[i]>dist[u]+w){dist[i] = dist[u] + w;q.push({dist[i],i});}}}memset(flag,0,sizeof flag);for(int i=0;i<=n;i++)dist2[i]=INF;dist2[n]=0;priority_queue<PII,vector<PII>,greater<PII>> q2;q2.push({0,n});while(q2.size()){int u = q2.top().second;q2.pop();if(flag[u])continue;flag[u]=1;for(int i=1;i<=n;i++){if(i==u)continue;int w = d[u][i]*b+c;if(dist2[i]>dist2[u]+w){dist2[i] = dist2[u] + w;q2.push({dist2[i],i});}}}int ans = INF ;for(int i=1;i<=n;i++){ans = min(ans,dist[i]+dist2[i]);}cout<<ans<<endl;}void slove(){cin>>n>>a>>b>>c;for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){cin>>d[i][j];}}dijkstra();
}signed main(){slove();
}

这篇关于0基础刷图论最短路 1(从ATcoder 0分到1800分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896801

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键