【数学建模】机器人避障问题

2024-04-12 00:52

本文主要是介绍【数学建模】机器人避障问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

已知:

  1. 正方形5的左下顶点坐标 ( 80 , 60 ) (80,60) (80,60),边长 150 150 150
  2. 机器人与障碍物的距离至少超过 10 10 10个单位
  3. 规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。
  4. 机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为 10 10 10个单位。
  5. 机器人直线行走的最大速度为 v 0 v_0 v0= 5单位/秒
  6. 机器人转弯时,最大转弯速度为 v = v ( p ) = v 0 / ( 1 + e 10 − 0.1 p 2 ) v = v(p) = v_0 /( {1+ e^{10-0.1p^2}}) v=v(p)=v0/(1+e100.1p2)
    其中 p p p是转弯半径。如果超过该速度,机器人将发生侧翻,无法完成行走。
  7. A点坐标 ( 300 , 300 ) (300,300) (300,300)

需要研究的问题

问题:机器人从 O ( 0 , 0 ) O(0,0) O(0,0)出发,到达A的最短时间及其路径

问题1:画出机器人只在正方形左上角拐弯,拐弯半径为10的图

第一问其实是为整个问题服务的 , 也算是先进行一个预测,写一个样例先

MATLAB
基本数据定义:

x = 80;
y = 210;
r = 10;
theta = 0:pi/20:2*pi; %角度[0,2*pi] 
hold on;

画一个正方形:

%定义x,y轴范围
xlim([0,300]);
ylim([0,300]);
%四条线形成一个正方形
line([80,80],[60,210]);
line([80,230],[210,210]);
line([80,230],[60,60]);
line([230,230],[60,210]);

在正方形左上角为圆心画圆

plot(x+r*cos(theta),y+r*sin(theta),'-');

接着求切点
建立切点模型:
设切点为 ( x 1 , x 2 ) (x_1,x_2) (x1,x2) , 正方形左上角为圆心 ( x , y ) , x = 80 ; y = 210 ; (x,y) , x = 80;y = 210; (x,y),x=80;y=210; 圆半径 r = 10 r = 10 r=10 ;切线上除切点另外一点 ( x 2 , y 2 ) (x_2,y_2) (x2,y2) ;
即圆外一点 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)引两条切线方程
因为切线和切点到圆心的直线垂直
则有 ( x − x 2 ) 2 + ( y − y 2 ) 2 = r 2 + ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 (x-x_2)^2+(y-y_2)^2 = r^2 + (x_1-x_2)^2 + (y_1-y_2)^2 (xx2)2+(yy2)2=r2+(x1x2)2+(y1y2)2
并且切点在圆上有: ( x 1 − x ) 2 + ( y 1 − y ) 2 = r 2 (x_1-x)^2 + (y_1-y)^2 = r^2 x1x2+(y1y)2=r2

由切点模型和圆外一点 O ( 0 , 0 ) O(0,0) O(0,0)建立方程求解

%这里在命令行窗口求解即可
solve('(px-80)^2+(py-210)^2=100','px^2+py^2+100=210^2+80^2');

排除不符合要求的点

px =  8064/101 - (252*14^(1/2))/101;%(252*14^(1/2))/101 + 8064/101
%8064/101 - (252*14^(1/2))/101py = (96*14^(1/2))/101 + 21168/101;%21168/101 - (96*14^(1/2))/101
%(96*14^(1/2))/101 + 21168/101

由切点模型和圆外一点 A ( 300 , 300 ) A(300,300) A(300,300)建立方程求解

%这里在命令行窗口求解即可
solve('(px-80)^2+(py-210)^2=100','(px-300)^2+(py-300)^2+100=220^2+90^2')

排除不符合要求的点

px2 =9084/113 - (36*141^(1/2))/113;
%(36*141^(1/2))/113 + 9084/113
%9084/113 - (36*141^(1/2))/113py2 =(88*141^(1/2))/113 + 23748/113;
%23748/113 - (88*141^(1/2))/113
%(88*141^(1/2))/113 + 23748/113

将切线画出来

line([0,px],[0,py]);
line([px2,300],[py2,300]);

在这里插入图片描述

问题2:机器人只在正方形左上角拐弯,拐弯半径为10,求路径长度和时间

由问题一的图可知,路径分三段
先求最简单的两段直线长度

pdist([[0,0];[px,py]],'euclidean')
pdist([[300,300];[px2,py2]],'euclidean')
%直线总距离
L2 = pdist([[0,0];[px,py]],'euclidean') + pdist([[300,300];[px2,py2]],'euclidean');

机器人走直线时间

ans1 = L2/v0

再求弧线长度和机器人走弧度时间以及总时间
已知圆上弧长公式为: l = ∣ θ ∣ r , ( θ 为圆心角,弧度 ) l=|\theta|r , (\theta为圆心角,弧度) l=θr,(θ为圆心角,弧度)

建立圆上两点弧长模型:
设圆上两点分别为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2)
则弦长为 d = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 d= \sqrt{(x_1-x_2)^2+(y_1-y_2)^2} d=(x1x2)2+(y1y2)2

设圆心角为 θ \theta θ,则圆周角为 θ / 2 \theta/2 θ/2
连接两点,连接其中一点和圆心并且延长 交圆上一点 ( x 3 , y 3 ) (x_3,y_3) (x3,y3) ,连接 ( x 3 , y 3 ) (x_3,y_3) (x3,y3)和另外一点,构成直角三角形
可得 s i n ( θ / 2 ) = d / ( 2 r ) sin(\theta/2) = d / (2r) sin(θ/2)=d/(2r)
所以 θ = 2 ∗ arcsin ⁡ ( d / ( 2 r ) ) \theta = 2*\arcsin{(d/(2r))} θ=2arcsin(d/(2r))
弧长 l = θ ∗ r l = \theta * r l=θr

%求弧度
%圆心角
d=sqrt((px-px2)^2+(py-py2)^2);
therta=2*asin(d/20);
%弧长
L=10*therta;

总时间


%求弧度
%圆心角
d=sqrt((px-px2)^2+(py-py2)^2);
therta=2*asin(d/20);
%弧长
L=10*therta;
%直线总距离
L2 = pdist([[0,0];[px,py]],'euclidean') + pdist([[300,300];[px2,py2]],'euclidean');v0 = 5;
vp = v0/(1+(exp(1)^(10-0.1*10*10)));ans1 = L2/v0 + L/vp;

求得为 96.017639004032700

问题3:求出最短时间及其路径

由前两问我们得出了圆上两点弧长模型建立切点模型
这一问就是结合上面模型,求一个求最小值的最优模型

设直线总长度为 s 1 s_1 s1,弧线总长度为 s 2 s_2 s2
min ⁡ a n s = s 1 / v 0 + s 2 / v \min{ans = s_1/v0 + s_2/v} minans=s1/v0+s2/v

最优的话拐弯半径和圆心肯定会变化
设转弯圆心为 ( x , y ) (x,y) (x,y),半径为 r r r
分别以 ( 0 , 0 ) 和 ( 300 , 300 ) (0,0)和(300,300) (0,0)(300,300)为圆外一点的切点分别为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2)
由建立切点模型我们可得以下方程
{ x 2 + y 2 = r 2 + x 1 2 + y 1 2 ( x 1 − x ) 2 + ( y 1 − y ) 2 = r 2 ( x − 300 ) 2 + ( y − 300 ) 2 = r 2 + ( x 1 − 300 ) 2 + ( y 1 − 300 ) 2 ( x 2 − x ) 2 + ( y 2 − y ) 2 = r 2 \begin{cases} x^2+y^2 = r^2 + x_1^2 + y_1^2 \\ (x_1-x)^2 + (y_1-y)^2 = r^2 \\ (x-300)^2+(y-300)^2 = r^2 + (x_1-300)^2 + (y_1-300)^2\\ (x_2-x)^2 + (y_2-y)^2 = r^2 \end{cases} x2+y2=r2+x12+y12x1x2+(y1y)2=r2(x300)2+(y300)2=r2+(x1300)2+(y1300)2x2x2+(y2y)2=r2

由圆上两点弧长模型和上述切点 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2)可得方程
s 2 = 2 ∗ ( arcsin ⁡ ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 / ( 2 r ) ) ∗ r s_2 = 2 * (\arcsin{\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}/(2r)})*r s2=2(arcsin(x1x2)2+(y1y2)2 /(2r))r

由圆心之间可得直线距离方程
s 1 = x 2 + y 2 − r 2 / v + ( x − 300 ) 2 + ( y − 300 ) 2 − r 2 / v s_1 = \sqrt{x^2+y^2-r^2}/v + \sqrt{(x-300)^2+(y-300)^2-r^2}/v s1=x2+y2r2 /v+(x300)2+(y300)2r2 /v
或者有上述切点可得直线距离方程为
s 1 = x 1 2 + y 1 2 / v + ( x 2 − 300 ) 2 + ( y 2 − 300 ) 2 / v s_1 = \sqrt{x_1^2+y_1^2}/v + \sqrt{(x_2-300)^2+(y_2-300)^2}/v s1=x12+y12 /v+(x2300)2+(y2300)2 /v

由于在左上角的时候是极限情况,圆心连接正方形左上角并延长出去距离必须大于等于10可得
r − ( x − 80 ) 2 + ( y − 210 ) 2 ≥ 10 r - \sqrt{(x-80)^2 + (y-210)^2}\ge10 r(x80)2+(y210)2 10

LINGO求解

data:
v0 = 5;
e = 2.71828;
enddata
s = 2*r * @asin(@sqrt((x1-x2)^2 + (y1-y2)^2)/(2*r));
v = v0 / (1+e^(10-0.1*r^2)); 
min  = @sqrt(x^2 + y^2 - r^2)/5 + @sqrt((x-300)^2 + (y-300)^2 - r^2 )/5 + s/v;
x1^2 + y1^2 + r^2 = x^2 + y^2;
(x2 - 300)^2 + (y2-300)^2 + r^2 = (x-300)^2 + (y-300)^2;
(x1-x)^2 + (y1-y)^2 = r^2;
(x2-x)^2 + (y2-y)^2 =  r^2;
r-@sqrt((x-80)^2+(y-210)^2)>=10;
x1<80;
y2>210;
x>=80 ; x<=230;
y>=60; y<=210;

得出

  Objective value:                              94.22825Objective bound:                              94.22825Variable           Value        Reduced CostV0        5.000000            0.000000E        2.718280            0.000000S        11.78994            0.000000R        12.98856            0.000000X1        69.80452            0.000000X2        77.74917            0.000000Y1        211.9779            0.000000Y2        220.1387            0.000000V        4.994814            0.000000X        82.14139            0.000000Y        207.9153            0.000000

将数据带入前两问已经写好的MATLAB中可得图像

x = 82.14139;
y = 207.9153;
r = 12.98856;
theta = 0:pi/20:2*pi; %角度[0,2*pi] 
plot(x+r*cos(theta),y+r*sin(theta),'-');
hold on;
xlim([0,300]);
ylim([0,300]);
line([80,80],[60,210]);
line([80,230],[210,210]);
line([80,230],[60,60]);
line([230,230],[60,210]);px =  69.80452;
py = 211.9779;
px2 =77.74917;
py2 =220.1387;line([0,px],[0,py]);
line([px2,300],[py2,300]);%求距离
pdist([[0,0];[px,py]],'euclidean')
pdist([[300,300];[px2,py2]],'euclidean')%求弧度
%圆心角
d=sqrt((px-px2)^2+(py-py2)^2);
therta=2*asin(d/(2*r));
%弧长
L=r*therta;
%直线总距离
L2 = pdist([[0,0];[px,py]],'euclidean') + pdist([[300,300];[px2,py2]],'euclidean');v0 = 5;
vp = v0/(1+(exp(1)^(10-0.1*r*r)));ans1 = L2/v0 + L/vp;

在这里插入图片描述
MATLAB数据算出来 , 验证成功

94.228254381074020

这篇关于【数学建模】机器人避障问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/895650

相关文章

redis在spring boot中异常退出的问题解决方案

《redis在springboot中异常退出的问题解决方案》:本文主要介绍redis在springboot中异常退出的问题解决方案,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴... 目录问题:解决 问题根源️ 解决方案1. 异步处理 + 提前ACK(关键步骤)2. 调整Redis消费者组

Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题

《Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题》:本文主要介绍Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录一、前言二、系统架构检测三、卸载旧版 Go四、下载并安装正确版本五、配置环境变量六、验证安装七、常见

解决Java异常报错:java.nio.channels.UnresolvedAddressException问题

《解决Java异常报错:java.nio.channels.UnresolvedAddressException问题》:本文主要介绍解决Java异常报错:java.nio.channels.Unr... 目录异常含义可能出现的场景1. 错误的 IP 地址格式2. DNS 解析失败3. 未初始化的地址对象解决

springboot+vue项目怎么解决跨域问题详解

《springboot+vue项目怎么解决跨域问题详解》:本文主要介绍springboot+vue项目怎么解决跨域问题的相关资料,包括前端代理、后端全局配置CORS、注解配置和Nginx反向代理,... 目录1. 前端代理(开发环境推荐)2. 后端全局配置 CORS(生产环境推荐)3. 后端注解配置(按接口

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Idea插件MybatisX失效的问题解决

《Idea插件MybatisX失效的问题解决》:本文主要介绍Idea插件MybatisX失效的问题解决,详细的介绍了4种问题的解决方法,具有一定的参考价值,感兴趣的可以了解一下... 目录一、重启idea或者卸载重装MyBATis插件(无需多言)二、检查.XML文件与.Java(该文件后缀Idea可能会隐藏

Nginx 访问 /root/下 403 Forbidden问题解决

《Nginx访问/root/下403Forbidden问题解决》在使用Nginx作为Web服务器时,可能会遇到403Forbidden错误,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录解决 Nginx 访问 /root/test/1.html 403 Forbidden 问题问题复现Ng

Python的pip在命令行无法使用问题的解决方法

《Python的pip在命令行无法使用问题的解决方法》PIP是通用的Python包管理工具,提供了对Python包的查找、下载、安装、卸载、更新等功能,安装诸如Pygame、Pymysql等Pyt... 目录前言一. pip是什么?二. 为什么无法使用?1. 当我们在命令行输入指令并回车时,一般主要是出现以

Nginx部署React项目时重定向循环问题的解决方案

《Nginx部署React项目时重定向循环问题的解决方案》Nginx在处理React项目请求时出现重定向循环,通常是由于`try_files`配置错误或`root`路径配置不当导致的,本文给大家详细介... 目录问题原因1. try_files 配置错误2. root 路径错误解决方法1. 检查 try_f

Python解决雅努斯问题实例方案详解

《Python解决雅努斯问题实例方案详解》:本文主要介绍Python解决雅努斯问题实例方案,雅努斯问题是指AI生成的3D对象在不同视角下出现不一致性的问题,即从不同角度看物体时,物体的形状会出现不... 目录一、雅努斯简介二、雅努斯问题三、示例代码四、解决方案五、完整解决方案一、雅努斯简介雅努斯(Janu