JavaScript 迈入 AI 新纪元

2024-04-11 22:28
文章标签 java ai script 新纪元 迈入

本文主要是介绍JavaScript 迈入 AI 新纪元,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着人工智能技术的不断进步,JavaScript 也迎来了自己的 AI 时代。

JS-Torch 是一个全新的深度学习库,专为 JavaScript 设计,其语法习惯与广受欢迎的 PyTorch 框架高度相似。这个库提供了一整套深度学习工具,包括可追踪梯度的张量对象、多层网络结构以及自动微分功能。

PyTorch,作为 JS-Torch 的灵感来源,是一个由 Meta AI 团队开发的开源深度学习框架。它以简洁、灵活和易用著称,其动态计算图让神经网络的构建变得更加直观。

JS-Torch 可以通过 npm 或 pnpm 进行安装,也可以在线体验其提供的 Demo。

npm install js-pytorch
pnpm add js-pytorch

在线体验地址:https://eduardoleao052.github.io/js-torch/assets/demo/demo.html

目前,JS-Torch 已经支持了基本的张量操作,如加法、减法、乘法和除法等,以及一些常用的深度学习层,例如nn.Linear、nn.MultiHeadSelfAttention、nn.FullyConnected、nn.Block等。

以下是一个简单的 JS-Torch 使用示例,展示了如何进行自动梯度计算:

// 导入 torch 模块
import { torch } from "js-pytorch";// 创建张量
let x = torch.randn([8, 4, 5]);
let w = torch.randn([8, 5, 4], { requires_grad: true });
let b = torch.tensor([0.2, 0.5, 0.1, 0.0], { requires_grad: true });// 执行计算
let out = torch.matmul(x, w);
out = torch.add(out, b);// 计算梯度
out.backward();// 输出梯度
console.log(w.grad);
console.log(b.grad);

更复杂的使用示例,如 Transformer 模型的实现,也包含在 JS-Torch 中:

// 导入 torch 模块和 nn 模块
import { torch, nn } from "js-pytorch";class Transformer extends nn.Module {constructor(vocab_size, hidden_size, n_timesteps, n_heads, p) {super();this.embed = new nn.Embedding(vocab_size, hidden_size);this.pos_embed = new nn.PositionalEmbedding(n_timesteps, hidden_size);this.b1 = new nn.Block(hidden_size, hidden_size, n_heads, n_timesteps, { dropout_p: p });this.b2 = new nn.Block(hidden_size, hidden_size, n_heads, n_timesteps, { dropout_p: p });this.ln = new nn.LayerNorm(hidden_size);this.linear = new nn.Linear(hidden_size, vocab_size);}forward(x) {let z = torch.add(this.embed.forward(x), this.pos_embed.forward(x));z = this.b1.forward(z);z = this.b2.forward(z);z = this.ln.forward(z);z = this.linear.forward(z);return z;}
}// 创建模型实例
const model = new Transformer(vocab_size, hidden_size, n_timesteps, n_heads, dropout_p);// 定义损失函数和优化器
const loss_func = new nn.CrossEntropyLoss();
const optimizer = new optim.Adam(model.parameters(), { lr: 5e-3, reg: 0 });// 创建样本输入和输出
let x = torch.randint(0, vocab_size, [batch_size, n_timesteps, 1]);
let y = torch.randint(0, vocab_size, [batch_size, n_timesteps]);let loss;
// 训练循环
for (let i = 0; i < 40; i++) {// 通过 Transformer 模型进行前向传播let z = model.forward(x);// 计算损失loss = loss_func.forward(z, y);// 使用 torch.tensor 的 backward 方法反向传播损失loss.backward();// 更新权重optimizer.step();// 每个训练步骤后将梯度重置为零optimizer.zero_grad();
}

JS-Torch 为在 Node.js、Deno 等 JavaScript 运行时环境中运行 AI 应用铺平了道路。

这篇关于JavaScript 迈入 AI 新纪元的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/895342

相关文章

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

Java Lambda表达式的使用详解

《JavaLambda表达式的使用详解》:本文主要介绍JavaLambda表达式的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言二、Lambda表达式概述1. 什么是Lambda表达式?三、Lambda表达式的语法规则1. 无参数的Lambda表

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

Spring @RequestMapping 注解及使用技巧详解

《Spring@RequestMapping注解及使用技巧详解》@RequestMapping是SpringMVC中定义请求映射规则的核心注解,用于将HTTP请求映射到Controller处理方法... 目录一、核心作用二、关键参数说明三、快捷组合注解四、动态路径参数(@PathVariable)五、匹配请

Java -jar命令如何运行外部依赖JAR包

《Java-jar命令如何运行外部依赖JAR包》在Java应用部署中,java-jar命令是启动可执行JAR包的标准方式,但当应用需要依赖外部JAR文件时,直接使用java-jar会面临类加载困... 目录引言:外部依赖JAR的必要性一、问题本质:类加载机制的限制1. Java -jar的默认行为2. 类加

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

Swagger在java中的运用及常见问题解决

《Swagger在java中的运用及常见问题解决》Swagger插件是一款深受Java开发者喜爱的工具,它在前后端分离的开发模式下发挥着重要作用,:本文主要介绍Swagger在java中的运用及常... 目录前言1. Swagger 的主要功能1.1 交互式 API 文档1.2 客户端 SDK 生成1.3