数字人项目 ER-NeRF 的使用和部署详细教程

2024-04-11 16:12

本文主要是介绍数字人项目 ER-NeRF 的使用和部署详细教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. ER-NeRF简介
  • 2. ER-NeRF部署
  • 3. 训练自己的数字人
  • 4. 生成数字人视频
  • 常见错误

1. ER-NeRF简介

ER-NeRF(官方链接)是一个Talking Portrait Synthesis(对嘴型)项目。即:给一段某人说话的视频,再给定一段音频,经过该模型后处理后,可将原视频的嘴型与音频保持一致。

该模型的有优点:

  • 可以做到实时响应。即模型比较小,处理速度快。

缺点:

  • 需要对“要对嘴型的视频”进行训练。也就是每段视频对应一个模型
  • 生成出的头部不够稳定。

2. ER-NeRF部署

ER-NeRF的环境要求:

  • Pytroch 1.12
  • CUDA 11.x (必须,否则pytorch3d相关的代码会报错)

部署步骤如下:

  1. 按顺序执行以下命令(一个一个执行)
# 这个知识针对pytorch的,本机的cuda不一定非要是11.6,但必须是11.x
conda install cudatoolkit=11.6 -c pytorch# 安装pytorch
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --index-url https://download.pytorch.org/whl/cu116# 安装pytorch3d,这一步一定要成功。否则后面处理数据会报错
pip install "git+https://github.com/facebookresearch/pytorch3d.git"# 安装tensorflow
pip install tensorflow-gpu==2.8.0# 安装一些必要的依赖
apt-get update
apt install portaudio19-dev
apt-get install ffmpeg# 克隆项目
git clone https://github.com/Fictionarry/ER-NeRF.git# 克隆项目,安装项目所需依赖
cd ER-NeRF
pip install -r requirements.txt# 重新安装protobuf,使用3.20.3版本
pip uninstall protobuf
pip install protobuf==3.20.3
  1. 下载模型。网盘链接地址,结构如下:
-- checkpoints  # 将其放在 `~/.cache/torch/hub/checkpoints` 目录下(这部可以不做,源码也会自己下载)
-- data_utils  # 将其下面的文件放在 `ER-NeRF/data_utils`对应目录下-- face_parsing-- face_tracking

3. 训练自己的数字人

如果就想用现有的模型(只有obama),可以跳转到第4节。

源码中提供了一个训练好的视频(obama)。若想训练自己的数字人模型,需要遵循以下步骤(以源码中提供的obama视频为例):

  1. 下载视频(要训练的视频片段),将其放在data目录下。以data/<ID>/<ID>.mp4明明。例如:kunkun.mp4就放在ER-NeRF/data/kunkun/kunkun.mp4
wget https://github.com/YudongGuo/AD-NeRF/blob/master/dataset/vids/Obama.mp4?raw=true -O data/obama/obama.mp4

视频要求(必须满足):① 帧率:25FPS;② 每一帧都要是人物说话;③ 分辨率:512x512;④ 时长:1-5分钟;⑤ 人物背景要稳定。

  1. 使用data_utils/process.py脚本处理视频
python data_utils/process.py data/<ID>/<ID>.mp4

这一步耗时较长,且容易出错(前面环境没配好就会导致某步出错,找出相应的环境配置,配好就行)。process.py包含多个任务,每个任务会生成若干文件,放在data/<ID>/*下面。可以根据对应的文件是否生成或日志来判断该任务是否正常完成:

  • task 1:分离视频。生成aud.wav文件。若报错,通常是ffmpeg问题。
  • task 2:生成一些音频数据,aud.npy文件。若报错,一般是protobuf版本问题。
  • task 3:提取视频中的每帧图像。生成ori_imgs/XXX.jpg文件,会有很多jpg文件。
  • task 4:分割人像(语义分割)。生成parsing/XX.png文件,会有很多png文件。
  • task 5:提取背景图像。生成bc.jpg文件。是人物的背景图片。
  • task 6:分割出身体部分与生成Ground Truth图片。生成gt_imgs/XXX.jpgtorso_imgs/XXX.png(只有躯干没有人脸的图片)。
  • task 7:获取人脸各个点位的坐标。生成ori_imgs/XXX.lms
  • task 8:获取人脸跟踪数据,这步要训练一个追踪模型,会很慢。生成track_params.pt文件。这部报错通常是pytorch3d的问题,注意cuda版本。
  • task 9:生成transformers_train.jsontransforms_val.json

如果某个任务报错,可以配置环境后使用:python data_utils/process.py data/<ID>/<ID>.mp4 --task <taskId>来重试。例如(重试任务2):python data_utils/process.py data/obama/obama.mp4 --task 2

  1. 将生成的aud.npy复制一份,改名aud_ds.npy(源码好像有点问题,所以要这么做)。

  2. 使用OpenFace生成<ID>.csv文件。具体步骤:① 下载OpenFace(Windows版本链接);② 解压文件,打卡里面的OpenFaceOffline.exe;③ Record里只勾选Record AUs 在这里插入图片描述 ;④ 打开文件,之后就开始运行。⑤ 等待运行结束,会在./processd文件夹中生成<ID>.csv文件,将其更名为au.csv。⑥ 将其放在data/<ID>/文件夹下。

  3. 训练模型,依次执行以下代码:

# 命令1:训练模型
python main.py data/obama/ --workspace trial_obama/ -O --iters 100000
# 命令2:在命令1完成后,再多训练“25000”次,微调一下lips
python main.py data/obama/ --workspace trial_obama/ -O --iters 125000 --finetune_lips --patch_size 32

trial_obama是工作路径,也就是生成的模型存放路径。运行完后会生成trial_obama文件夹,文件树如下:

-- checkpoints/  # 模型文件├── ngp_ep0013.pth  # 第13个epoch的文件(会保存最后两个epoch的文件)├── ngp_ep0014.pth└── ngp.pth   # 最终的模型文件
-- log_ngp.txt   # 训练过程中的日志文件
-- opt.txt  # 训练时传的启动参数
-- result   # 训练结果文件├── ngp_ep0014_depth.mp4└── ngp_ep0014.mp4  # 可以下载这个文件看效果
-- run/ngp/events.out.xxxxx   # 训练过程中的数据
-- validation

上面两个命令运行完后,运行下面:

python main.py data/obama/ --workspace trial_obama_torso/ -O --torso --head_ckpt trial_obama/checkpoints/ngp.pth --iters 200000

trial_obama/checkpoints/ngp.pth 为上面生成的最终模型文件

4. 生成数字人视频

当模型生成出来后,就可以用我们自己的语音来生成视频了。需要遵循以下3步骤:

  1. 上传音频,提取音频数据(生成对应的npy文件)

例如:

python data_utils/deepspeech_features/extract_ds_features.py --input /root/demo2.wav

将demo2.wav更改为你的音频文件。执行结束后,会在同目录生成demo2.npy文件

  1. 执行模型推理,生成对口型后的视频文件。不过生成的视频没有声音。
python main.py data/obama/ --workspace trial_obama_torso/ -O --torso --test --test_train --aud /root/demo2.npy

最后的/root/demo2.npy就是第一步生成的npy文件

  1. 将音频和视频合并起来。
ffmpeg -i /root/ER-NeRF/trial_obama_torso/results/ngp_ep0028.mp4 -i /root/demo2.wav -c:v copy -c:a aac -strict experimental /root/output.mp4

ngp_ep0028.mp4是第二步生成的视频(日志里可以看到在哪)。
demo2.wav是上传的音频。
/root/output.mp4 是你想要输出文件的路径



常见错误

  1. ValueError: Found array with 0 sample(s) (shape=(0, 2)) while a minimum of 1 is required by NearestNeighbors.:
Traceback (most recent call last):File "data_utils/process.py", line 417, in <module>extract_background(base_dir, ori_imgs_dir)File "data_utils/process.py", line 112, in extract_backgroundnbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)File "/root/miniconda3/lib/python3.8/site-packages/sklearn/base.py", line 1152, in wrapperreturn fit_method(estimator, *args, **kwargs)File "/root/miniconda3/lib/python3.8/site-packages/sklearn/neighbors/_unsupervised.py", line 175, in fitreturn self._fit(X)File "/root/miniconda3/lib/python3.8/site-packages/sklearn/neighbors/_base.py", line 498, in _fitX = self._validate_data(X, accept_sparse="csr", order="C")File "/root/miniconda3/lib/python3.8/site-packages/sklearn/base.py", line 605, in _validate_dataout = check_array(X, input_name="X", **check_params)File "/root/miniconda3/lib/python3.8/site-packages/sklearn/utils/validation.py", line 967, in check_arrayraise ValueError(
ValueError: Found array with 0 sample(s) (shape=(0, 2)) while a minimum of 1 is required by NearestNeighbors.

原因:视频中的部分帧没有人脸。一般容易出现在视频开头或结尾。可以通过查看生成的parsing文件夹的图片进行确认。详见issus

这篇关于数字人项目 ER-NeRF 的使用和部署详细教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/894557

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.