【路径规划】基于matlab一种带交叉因子的双向寻优粒子群栅格地图最短路径规划【含Matlab源码 117期】

本文主要是介绍【路径规划】基于matlab一种带交叉因子的双向寻优粒子群栅格地图最短路径规划【含Matlab源码 117期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、双向寻优粒子群及栅格地图简介

1 双向寻优粒子群简介
针对传统粒子群算法易早熟、精度低、后期收敛速度慢等问题,结合反向学习理论,提出了一种基于交叉因子的双向寻优粒子群优化算法(CBMPSO)。该算法使初始种群在搜索区域均匀分布,计算粒子及其反向粒子的适应值,取最优作为初始种群;迭代过程增加对全局最差粒子的跟踪,随机开启基于交叉因子的双向学习机制。对几种典型函数的测试结果表明,CBMPSO算法的寻优能力及收敛速度有了显著提高,并且能够有效避免早熟收敛问题。

2 栅格地图简介

2 栅格地图
2.1 栅格法应用背景
路径规划时首先要获取环境信息, 建立环境地图, 合理的环境表示有利于建立规划方法和选择合适的搜索算法,最终实现较少的时间开销而规划出较为满意的路径。一般使用栅格法在静态环境下建立环境地图。
2.2 栅格法实质
将AGV的工作环境进行单元分割, 将其用大小相等的方块表示出来,这样栅格大小的选取是影响规划算法性能的一个很重要的因素。栅格较小的话,由栅格地图所表示的环境信息将会非常清晰,但由于需要存储较多的信息,会增大存储开销,同时干扰信号也会随之增加,规划速度会相应降低,实时性得不到保证;反之,由于信息存储量少,抗干扰能力有所增强,规划速随之增快,但环境信息划分会变得较为模糊,不利于有效路径的规划。在描述环境信息时障碍物所在区域在栅格地图中呈现为黑色,地图矩阵中标为1,可自由通行区域在栅格地图中呈现为白色,地图矩阵中标为0。路径规划的目的就是在建立好的环境地图中找到一条最优的可通行路径,所以使用栅格法建立环境地图时,栅格大小的合理设定非常关键。
2.3 10乘10的静态环境地图
在这里插入图片描述
10乘10的静态环境地图代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境地图%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DrawMap(map)
n = size(map);
step = 1;
a = 0 : step :n(1);
b = 0 : step :n(2);
figure(1)
axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸
set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...
'xGrid','on','yGrid','on');
hold on
r = 1;
for(i=1:n(1))         %设置障碍物的左下角点的x,y坐标for(j=1:n(2))if(map(i,j)==1)p(r,1)=j-1;p(r,2)=i-1;fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...[p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');r=r+1;hold onendend
end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_text = 1:1:n(1)*n(2); %产生所需数值.
for i = 1:1:n(1)*n(2)[row,col] = ind2sub([n(2),n(1)],i);text(row-0.9,col-0.5,num2str(x_text(i)),'FontSize',8,'Color','0.7 0.7 0.7');
end
hold on
axis square

建立环境矩阵,1代表黑色栅格,0代表白色栅格,调用以上程序,即可得到上述环境地图。

map=[0 0 0 1 0 0 1 0 0 0;1 0 0 0 0 1 1 0 0 0;0 0 1 0 0 0 1 1 0 0;0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 1 0 0 1 0;1 0 0 0 0 1 1 0 0 0;0 0 0 1 0 0 0 0 0 0;1 1 1 0 0 0 1 0 0 0;0 0 0 0 0 1 1 0 0 0;0 0 0 0 0 1 1 0 0 0;];DrawMap(map);         %得到环境地图

2.4 栅格地图中障碍栅格处路径约束
移动体栅格环境中多采用八方向的移动方式,此移动方式在完全可通行区域不存在运行安全问题,当
移动体周围存在障碍栅格时此移动方式可能会发生与障碍物栅格的碰撞问题,为解决此问题加入约束
条件,当在分别与障碍物栅格水平方向和垂直方向的可行栅格两栅格之间通行时,禁止移动体采用对
角式移动方式。
在这里插入图片描述
在这里插入图片描述
约束条件的加入,实质是改变栅格地图的邻接矩阵,将障碍栅格(数字为“1”的矩阵元素)的对角栅格
设为不可达, 即将对角栅格的距离值改为无穷大。其实现MATLAB代码如下:
代码:

%约束移动体在障碍栅格对角运动
%通过优化邻接矩阵实现
%%%%%%%%%%%%%%%%%% 约束移动体移动方式 %%%%%%%%%%%%%%%%%
function W=OPW(map,W)
% map 地图矩阵  % W 邻接矩阵
n = size(map);
num = n(1)*n(2);
for(j=1:n(1))for(z=1:n(2))if(map(j,z)==1)if(j==1)                  %若障碍物在第一行if(z==1)               %若障碍物为第一行的第一个W(j+1,j+n(2)*j)=Inf;W(j+n(2)*j,j+1)=Inf;elseif(z==n(2))         %若障碍物为第一行的最后一个W(n(2)-1,n(2)+n(1)*j)=Inf;W(n(2)+n(1)*j,n(2)-1)=Inf;else                %若障碍物为第一行的其他W(z-1,z+j*n(2))=Inf;W(z+j*n(2),z-1)=Inf;W(z+1,z+j*n(2))=Inf;W(z+j*n(2),z+1)=Inf;endendendif(j==n(1))               %若障碍物在最后一行if(z==1)               %若障碍物为最后一行的第一个W(z+n(2)*(j-2),z+n(2)*(j-1)+1)=Inf;W(z+n(2)*(j-1)+1,z+n(2)*(j-2))=Inf;elseif(z==n(2))            %若障碍物为最后一行的最后一个W(n(1)*n(2)-1,(n(1)-1)*n(2))=Inf;W((n(1)-1)*n(2),n(1)*n(2)-1)=Inf;else                   %若障碍物为最后一行的其他W((j-2)*n(2)+z,(j-1)*n(2)+z-1)=Inf;W((j-1)*n(2)+z-1,(j-2)*n(2)+z)=Inf;W((j-2)*n(2)+z,(j-1)*n(2)+z+1)=Inf;W((j-1)*n(2)+z+1,(j-2)*n(2)+z)=Inf;endendendif(z==1)              if(j~=1&&j~=n(1))       %若障碍物在第一列非边缘位置 W(z+(j-2)*n(2),z+1+(j-1)*n(2))=Inf;W(z+1+(j-1)*n(2),z+(j-2)*n(2))=Inf;W(z+1+(j-1)*n(2),z+j*n(2))=Inf;W(z+j*n(2),z+1+(j-1)*n(2))=Inf;endendif(z==n(2))if(j~=1&&j~=n(1))         %若障碍物在最后一列非边缘位置 W((j+1)*n(2),j*n(2)-1)=Inf;W(j*n(2)-1,(j+1)*n(2))=Inf;W(j*n(2)-1,(j-1)*n(2))=Inf;W((j-1)*n(2),j*n(2)-1)=Inf;endendif(j~=1&&j~=n(1)&&z~=1&&z~=n(2))   %若障碍物在非边缘位置W(z+(j-1)*n(2)-1,z+j*n(2))=Inf;W(z+j*n(2),z+(j-1)*n(2)-1)=Inf;W(z+j*n(2),z+(j-1)*n(2)+1)=Inf;W(z+(j-1)*n(2)+1,z+j*n(2))=Inf;W(z+(j-1)*n(2)-1,z+(j-2)*n(2))=Inf;W(z+(j-2)*n(2),z+(j-1)*n(2)-1)=Inf;W(z+(j-2)*n(2),z+(j-1)*n(2)+1)=Inf;W(z+(j-1)*n(2)+1,z+(j-2)*n(2))=Inf;endendendend
end

2.5 栅格法案例
下面以Djkstra算法为例, 其实现如下:

map=[0 0 0 1 0 0 1 0 0 0;1 0 0 0 0 1 1 0 0 0;0 0 1 0 0 0 1 1 0 0;0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 1 0 0 1 0;1 0 0 0 0 1 1 0 0 0;0 0 0 1 0 0 0 0 0 0;1 1 1 0 0 0 1 0 0 0;0 0 0 0 0 1 1 0 0 0;0 0 0 0 0 1 1 0 0 0;];%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境矩阵map%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DrawMap(map); %得到环境地图
W=G2D(map);   %得到环境地图的邻接矩阵
W(W==0)=Inf;  %邻接矩阵数值处理
W=OPW(map,W); %优化邻接矩阵
[distance,path]=dijkstra(W,1,100);%设置起始栅格,得到最短路径距离以及栅格路径
[x,y]=Get_xy(distance,path,map);   %得到栅格相应的x,y坐标
Plot(distance,x,y);   %画出路径

运行结果如下:
在这里插入图片描述
其中函数程序:
DrawMap(map) 详见建立栅格地图
W=G2D(map) ; 详见建立邻接矩阵
[distance, path] =dijkstra(W, 1, 100) 详见Djk stra算法
[x, y] =Get_xy(distance, path, map) ;
Plot(distance, x, y) ;

⛄二、部分源代码

clc;
close all
clear
load(‘data4.mat’)
S=(S_coo(2)-0.5)*num_shange+(S_coo(1)+0.5);%起点对应的编号
E=(E_coo(2)-0.5)*num_shange+(E_coo(1)+0.5);%终点对应的编号

PopSize=20;%种群大小
OldBestFitness=0;%旧的最优适应度值
gen=0;%迭代次数
maxgen =100;%最大迭代次数

c1=0.5;%认知系数
c2=0.7;%社会学习系数
c3=0.2;%反向因子
w=0.96;%惯性系数
%%
%初始化路径
w_min=0.5;
w_max=1;
Group=ones(num_point,PopSize); %种群初始化
flag=1;
%% 初始化粒子群位置
for i=1:PopSize
p_lin=randperm(num_point)';%随机生成1*400不重复的行向量
%% 将起点编号放在首位
index=find(p_linS);
lin=p_lin(1);
p_lin(1)=p_lin(index);
p_lin(index)=lin;
Group(:,i)=p_lin;
%%将每个个体进行合理化处理
[Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
fangxiang_Group(:,i)=fangxiang(Group(:,i),c3);%方向粒子数量
while flag
1%如处理不成功,则初始化个体,重新处理
%% 将起点编号放在首位
index=find(p_lin==S);
lin=p_lin(1);
p_lin(1)=p_lin(index);
p_lin(index)=lin;
Group(:,i)=p_lin;
fangxiang_Group(:,i)=p_lin;
%%将每个个体进行合理化处理
[Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
[fangxiang_Group(:,i),flag]=deal_fun(fangxiang_Group(:,i),num_point,liantong_point,E,num_shange);
end

end

%初始化粒子速度(即交换序)
Velocity =zeros(num_point,PopSize);
for i=1:PopSize
Velocity(:,i)=round(rand(1,num_point)'*num_point/10); %round取整
end

%计算每个个体对应路径的距离
for i=1:PopSize
EachPathDis(i) = PathDistance(Group(:,i)‘,E,num_shange);
EachPathDis_fangxiang(i) = PathDistance(fangxiang_Group(:,i)’,E,num_shange);
end

IndivdualBest=Group;%记录各粒子的个体极值点位置,即个体找到的最短路径
IndivdualBestFitness=EachPathDis;%记录最佳适应度值,即个体找到的最短路径的长度
if min(EachPathDis)<min(EachPathDis_fangxiang)
[GlobalBestFitness,index]=min(EachPathDis);%找出全局最优值和相应序号
else
[GlobalBestFitness,index]=min(EachPathDis_fangxiang);%找出全局最优值和相应序号
end
%寻优
while gen < maxgen
w=w_max-(w_max-w_min)*gen/maxgen;%自适应权重
%迭代次数递增
gen = gen +1
%更新全局极值点位置,这里指路径
for i=1:PopSize
if min(EachPathDis)<min(EachPathDis_fangxiang)

    GlobalBest(:,i) = Group(:,index);elseGlobalBest(:,i) = fangxiang_Group(:,index);end
end%求pij-xij ,pgj-xij交换序,并以概率c1,c2的保留交换序
pij_xij=GenerateChangeNums(Group,IndivdualBest);  %根据个体最优解求交换序
pij_xij=HoldByOdds(pij_xij,c1);%以概率c1保留交换序
pgj_xij=GenerateChangeNums(Group,GlobalBest);%根据全局最优解求交换序
pgj_xij=HoldByOdds(pgj_xij,c2);%以概率c2保留交换序pfj_xij=GenerateChangeNums(Group,fangxiang_Group);%根据反向求交换序
pfj_xij=HoldByOdds(pfj_xij,c3);%以概率c3保留交换序
%以概率w保留上一代交换序
Velocity=HoldByOdds(Velocity,w);Group = PathExchange(Group,pfj_xij);%根据反向粒子位置进行交换
Group = PathExchange(Group,Velocity); %根据交换序进行路径交换
Group = PathExchange(Group,pij_xij);%粒子位置变换通过速度、全局性适应度和个体适应度对比来交换来实现,完成自我学习和社会学习
Group = PathExchange(Group,pgj_xij);for i = 1:PopSize[Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);while flag==1p_lin=randperm(num_point)';index=find(p_lin==S);lin=p_lin(1);p_lin(1)=p_lin(index);p_lin(index)=lin;Group(:,i)=p_lin;[Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);end
end
for i = 1:PopSize    % 更新各路径总距离EachPathDis(i) = PathDistance(Group(:,i)',E,num_shange);
end
IsChange = EachPathDis<IndivdualBestFitness;%更新后的距离优于更新前的,记录序号
IndivdualBest(:, find(IsChange)) = Group(:, find(IsChange));%更新个体最佳路径
IndivdualBestFitness = IndivdualBestFitness.*( ~IsChange) + EachPathDis.*IsChange;%更新个体最佳路径距离
[GlobalBestFitness, index] = min(IndivdualBestFitness);%更新全局最佳路径,记录相应的序号if GlobalBestFitness~=OldBestFitness %比较更新前和更新后的适应度值;OldBestFitness=GlobalBestFitness;%不相等时更新适应度值best_route=IndivdualBest(:,index)';
end
BestFitness(gen) =GlobalBestFitness;%每一代的最优适应度

end
%最优解
index1=find(best_route==E);
route_lin=best_route(1:index1);

%最优解
figure(3)
hold on
for i=1:num_shange
for j=1:num_shange
if sign(i,j)==1
y=[i-1,i-1,i,i];
x=[j-1,j,j,j-1];
h=fill(x,y,‘k’);
set(h,‘facealpha’,0.5)
end
s=(num2str((i-1)*num_shange+j));
text(j-0.95,i-0.5,s,‘fontsize’,6)
end
end
axis([0 num_shange 0 num_shange])%限制图的边界
plot(S_coo(2),S_coo(1), ‘p’,‘markersize’, 10,‘markerfacecolor’,‘b’,‘MarkerEdgeColor’, ‘m’)%画起点
plot(E_coo(2),E_coo(1),‘o’,‘markersize’, 10,‘markerfacecolor’,‘g’,‘MarkerEdgeColor’, ‘c’)%画终点
set(gca,‘YDir’,‘reverse’);%图像翻转
for i=1:num_shange
plot([0 num_shange],[i-1 i-1],‘k-’);
plot([i i],[0 num_shange],‘k-’);%画网格线
end
for i=2:index1
Q1=[mod(route_lin(i-1)-1,num_shange)+1-0.5,ceil(route_lin(i-1)/num_shange)-0.5];
Q2=[mod(route_lin(i)-1,num_shange)+1-0.5,ceil(route_lin(i)/num_shange)-0.5];
plot([Q1(1),Q2(1)],[Q1(2),Q2(2)],‘r’,‘LineWidth’,3)
end
title(‘粒子群算法-最优路线’);

%进化曲线
figure(4);
plot(BestFitness);
xlabel(‘迭代次数’)
ylabel(‘适应度值’)
grid on;
title(‘进化曲线’);
disp(‘粒子群算法-最优路线方案:’)
disp(num2str(route_lin))
disp([‘起点到终点的距离:’,num2str(BestFitness(end))]);
figure(5);
plot(BestFitness*100);
xlabel(‘迭代次数’)
ylabel(‘适应度值’)
grid on;
title(‘最佳个体适应度值变化趋势’);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]温雅,李国,徐晨.一种带交叉因子的双向寻优粒子群优化算法[J].计算机应用研究. 2013,30(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【路径规划】基于matlab一种带交叉因子的双向寻优粒子群栅格地图最短路径规划【含Matlab源码 117期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893671

相关文章

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

Android实现一键录屏功能(附源码)

《Android实现一键录屏功能(附源码)》在Android5.0及以上版本,系统提供了MediaProjectionAPI,允许应用在用户授权下录制屏幕内容并输出到视频文件,所以本文将基于此实现一个... 目录一、项目介绍二、相关技术与原理三、系统权限与用户授权四、项目架构与流程五、环境配置与依赖六、完整

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地