【图像分割】基于matlab GUI多种阈值图像分割(带面板)【含Matlab源码 733期】

2024-04-11 07:38

本文主要是介绍【图像分割】基于matlab GUI多种阈值图像分割(带面板)【含Matlab源码 733期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、图像分割简介

理论知识参考:【基础教程】基于matlab图像处理图像分割【含Matlab源码 191期】

⛄二、部分源代码

function varargout = yuzhifenge(varargin)
% YUZHIFENGE MATLAB code for yuzhifenge.fig
% YUZHIFENGE, by itself, creates a new YUZHIFENGE or raises the existing
% singleton*.
%
% H = YUZHIFENGE returns the handle to a new YUZHIFENGE or the handle to
% the existing singleton*.
%
% YUZHIFENGE(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in YUZHIFENGE.M with the given input arguments.
%
% YUZHIFENGE(‘Property’,‘Value’,…) creates a new YUZHIFENGE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before yuzhifenge_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to yuzhifenge_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help yuzhifenge

% Last Modified by GUIDE v2.5 05-Nov-2017 11:53:20

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @yuzhifenge_OpeningFcn, …
‘gui_OutputFcn’, @yuzhifenge_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before yuzhifenge is made visible.
function yuzhifenge_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to yuzhifenge (see VARARGIN)

% Choose default command line output for yuzhifenge
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes yuzhifenge wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = yuzhifenge_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im;
[filename,pathname]=…
uigetfile({‘.jpg’;'.bnp’;‘*.png’},‘选择图片’);
str=[pathname filename];
im=imread(str);
axes(handles.axes1);
imshow(im);
title(‘原始图像’)
axes(handles.axes3);
if isrgb( im )
im=rgb2gray(im);
end
hist_im=imhist(im); %计算直方图
bar(hist_im);%画直方图
title(‘原始图像灰度直方图’)

% — Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcf)

% — Executes on button press in radiobutton1.
function radiobutton1_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,‘Value’) returns toggle state of radiobutton1
set(handles.radiobutton1,‘value’,1);
set(handles.radiobutton2,‘value’,0);
set(handles.radiobutton3,‘value’,0);
set(handles.popupmenu1,‘value’,1);
set(handles.popupmenu2,‘value’,1);
global im;
B=im;
T=0.5*(double(min(B(😃))+double(max(B(😃)));
d=false;
%通过迭代求最佳阈值
while~d
g=B>=T;%g=0或1
Tn=0.5*(mean(B(g))+mean(B(~g)));%mean(A,2)是矩阵求各行的均值,
%mean(A)表示求矩阵A的均值,默认的是求各列的均值
if(abs(T-Tn)<0.1)
d=1;
end
T=Tn;
end
axes(handles.axes2);
% 根据最佳阈值进行图像分割
level=T/255;
J=im2bw(B,level);
imshow(J);
title(‘使用基本全局阈值法’);

% — Executes on button press in radiobutton2.
function radiobutton2_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,‘Value’) returns toggle state of radiobutton2
set(handles.radiobutton1,‘value’,0);
set(handles.radiobutton2,‘value’,1);
set(handles.radiobutton3,‘value’,0);
set(handles.popupmenu1,‘value’,1);
set(handles.popupmenu2,‘value’,1);
global im;
I=im;
I=im2double(I);
%[width,height]=size(I);
%otsu
Th = graythresh(I);
BW = im2bw(I,Th);
axes(handles.axes2);
imshow(BW);
title(‘Otsu最佳阈值法’);

% — Executes on button press in radiobutton3.
function radiobutton3_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,‘Value’) returns toggle state of radiobutton3
set(handles.radiobutton1,‘value’,0);
set(handles.radiobutton2,‘value’,0);
set(handles.radiobutton3,‘value’,1);
set(handles.popupmenu1,‘value’,1);
set(handles.popupmenu2,‘value’,1);
global im;
zi=im;
bw=adaptivethreshold(zi,11,0.03,0);% ws=11-平均滤波时的窗口大小,可参考fspecial的用法
% C-0.03常量,需要根据经验选取合适的参数
% tm-开关变量,tm=1进行中值滤波,tm=0则进行均值滤波
% bw-图像分割后输出的二值图像
axes(handles.axes2);
imshow(bw);
title(‘自适应阈值’);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]赵勇,方宗德,庞辉,王侃伟.基于量子粒子群优化算法的最小交叉熵多阈值图像分割[J].计算机应用研究. 2008,(04)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【图像分割】基于matlab GUI多种阈值图像分割(带面板)【含Matlab源码 733期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893466

相关文章

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1

SpringBoot项目Web拦截器使用的多种方式

《SpringBoot项目Web拦截器使用的多种方式》在SpringBoot应用中,Web拦截器(Interceptor)是一种用于在请求处理的不同阶段执行自定义逻辑的机制,下面给大家介绍Sprin... 目录一、实现 HandlerInterceptor 接口1、创建HandlerInterceptor实

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3