torch.mean()的使用方法

2024-04-11 06:36
文章标签 使用 方法 torch mean

本文主要是介绍torch.mean()的使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对一个三维数组的每一维度进行操作

1,dim=0

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 0) 
print(mean, mean.shape)

输出结果:

tensor([[[0., 1.],

             [2., 3.]],

             [[4., 5.],

              [6., 7.]]])

tensor([[2., 3.],

            [4., 5.]]) torch.Size([2, 2])

2,dim=1

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 1) 
print(mean, mean.shape)

输出结果

tensor(

[[[0., 1.],

[2., 3.]],

[[4., 5.],

[6., 7.]]])

tensor(

[[1., 2.],

[5., 6.]]) torch.Size([2, 2])

3,dim=2

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 2) 
print(mean, mean.shape)

输出结果

tensor(

[[[0., 1.],

[2., 3.]],

[[4., 5.],

[6., 7.]]])

tensor(

[[0.5000, 2.5000],

[4.5000, 6.5000]]) torch.Size([2, 2])

补充,如果在函数中添加了True,表示要和原来数的维度一致,不够的用维度1来添加,如下


a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 2, True) 
print(mean, mean.shape)
tensor([[[0., 1.],[2., 3.]],[[4., 5.],[6., 7.]]])
tensor([[[0.5000],[2.5000]],[[4.5000],[6.5000]]]) torch.Size([2, 2, 1])

补充多维度变化


a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 0, True) 
print(mean, mean.shape)
tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 4.,  5.],[ 6.,  7.]],[[ 8.,  9.],[10., 11.]]]]) torch.Size([1, 2, 2, 2])

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 1, True) 
print(mean, mean.shape)
tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 2.,  3.],[ 4.,  5.]]],[[[10., 11.],[12., 13.]]]]) torch.Size([2, 1, 2, 2])
a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 2, True) 
print(mean, mean.shape)tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 1.,  2.]],[[ 5.,  6.]]],[[[ 9., 10.]],[[13., 14.]]]]) torch.Size([2, 2, 1, 2])

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 3, True) 
print(mean, mean.shape)
tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 0.5000],[ 2.5000]],[[ 4.5000],[ 6.5000]]],[[[ 8.5000],[10.5000]],[[12.5000],[14.5000]]]]) torch.Size([2, 2, 2, 1])

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15,0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2,2) 
print(a) 
mean = torch.mean(a, 3, True) 
print(mean, mean.shape)
tensor([[[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]],[[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]]])
tensor([[[[[ 1.,  2.]],[[ 5.,  6.]]],[[[ 9., 10.]],[[13., 14.]]]],[[[[ 1.,  2.]],[[ 5.,  6.]]],[[[ 9., 10.]],[[13., 14.]]]]]) torch.Size([2, 2, 2, 1, 2])

这篇关于torch.mean()的使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/893324

相关文章

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

MySQL 衍生表(Derived Tables)的使用

《MySQL衍生表(DerivedTables)的使用》本文主要介绍了MySQL衍生表(DerivedTables)的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录一、衍生表简介1.1 衍生表基本用法1.2 自定义列名1.3 衍生表的局限在SQL的查询语句select

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

MySQL分区表的具体使用

《MySQL分区表的具体使用》MySQL分区表通过规则将数据分至不同物理存储,提升管理与查询效率,本文主要介绍了MySQL分区表的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、分区的类型1. Range partition(范围分区)2. List partition(列表分区)3. H