【阙值分割】基于matlab遗传算法自适应多阈值图像分割【含Matlab源码 1460期】

2024-04-11 05:38

本文主要是介绍【阙值分割】基于matlab遗传算法自适应多阈值图像分割【含Matlab源码 1460期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、遗传算法自适应多阈值图像分割简介

理论知识参考:【基础教程】基于matlab图像处理图像分割【含Matlab源码 191期】
基于遗传算法的自适应最优阈值图像分割技术研究

⛄二、部分源代码

function main()
clear;
clc;
%种群大小
popsize=100;
%二进制编码长度
chromlength=10;
%交叉概率
pc = 0.6;
%变异概率
pm = 0.001;
%初始种群
pop = initpop(popsize,chromlength);

for i = 1:100
%计算适应度值(函数值)
objvalue = cal_objvalue(pop);
fitvalue = objvalue;
%选择操作
newpop = selection(pop,fitvalue);
%交叉操作
newpop = crossover(newpop,pc);
%变异操作
newpop = mutation(newpop,pm);
%更新种群
pop = newpop;
%寻找最优解
[bestindividual,bestfit] = best(pop,fitvalue);
x2 = binary2decimal(bestindividual);
x1 = binary2decimal(newpop);
y1 = cal_objvalue(newpop);
if mod(i,50) == 0

    figure; %Matlab中的figure命令,能够创建一个用来显示图形输出的一个窗口对象fplot(@(x)x+10.*sin(5.*x)+7.*cos(4.*x),[5,20]);%fplot('x+10*sin(5*x)+7*cos(4*x)',[5 20]);%自适应绘图,第一个参数为函数,第二个参数为坐标轴取值范围hold on;% hold on作用是保持原图并接受此后绘制的新的曲线,叠加绘图; 多次叠绘: plot命令可以同时绘制多条曲线plot(x1,y1,'*');%最优解用*标注title(['迭代次数为n=' num2str(i)]);%num2str函数将数值转换为字符串%plot(x1,y1,'*');

end
end

fprintf(‘The best X is —>>%5.2f\n’,x2); %指定数据输出时格式为小数形式
fprintf(‘The best Y is —>>%5.2f\n’,bestfit);
end

function pop=initpop(popsize,chromlength)
pop = round(rand(popsize,chromlength));
end

function pop2 = binary2decimal(pop)
lb=5; %x的取值范围下界
ub=20; %x的取值范围上界
[px,py]=size(pop); %px是矩阵的行,py是矩阵的列数,这里px是种群个数,py为染色体长度
%[r,c]=size(A),当有两个输出参数时,size函数将矩阵的行数返回到第一个输出变量r,将矩阵的列数返回到第二个输出变量c。
for i = 1:py
pop1(:,i) = 2.^(py-i).*pop(:,i); %冒号代表对所有行都有这样的操作
%py-i相当于说第一列到最后一列的顺序倒置过来
end

%sum(.,2)对行求和,得到列向量
temp = sum(pop1,2);

pop2 = 5+(temp*(ub-lb)/1023);
%根据X的取值范围进行2进制到10进制的转换,(ub-lb)相当于一个线段,temp/1023相当于二进制在这个区间上的占比,得到的结果再乘以(ub-lb)得到其在这段线段上的位置,再加上下界,就转换成了这个区间上的十进制。
end

function [objvalue] = cal_objvalue(pop)
x = binary2decimal(pop);%转化二进制数为x变量的变化域范围的数值
objvalue= x+10sin(5x)+7cos(4x);
end

%如何选择新的个体
%输入变量:pop二进制种群,fitvalue:适应度值
%输出变量:newpop选择以后的二进制种群
function [newpop] = selection(pop,fitvalue)
%构造轮盘
[px,py] = size(pop);
totalfit = sum(fitvalue);%总的适应度值
p_fitvalue = fitvalue/totalfit;%每个适应度值在轮盘中的占比,也就是相对适应度的大小,即为每个个体被遗传到下一代群体中的概率
p_fitvalue = cumsum(p_fitvalue);%概率求和排序 cumsum()得到输入矩阵的每个元素对应的列向上(行向左)求和矩阵
ms = sort(rand(px,1));%从小到大排列 生成种群大小的0-1的随机数字,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选
%中的次数
fitin = 1;
newin = 1;%行选择标量

%选出新的种群
while newin<=px %初始行向量为1,,从第一行开始遍历
if(ms(newin))<p_fitvalue(fitin)%当产生的随机数字<个体被遗传到下一代群体中的概率时,即为可遗传

elsefitin=fitin+1;%如果不可遗传,就检查下一个更大的区域 
end

end
end

if(rand<pc)%当随机数小于交叉概率时才进行交叉%rand没有参数的时候就是从均匀分布中生成一个0-1之间的随机数cpoint = round(rand*py);%round是一个四舍五入的函数 用随机数*列数是在随机设置交叉点的位置newpop(i,:) = [pop(i,1:cpoint),pop(i+1,cpoint+1:py)];%截取第i行交叉点前面的和第i+1行交叉点后面的进行连接newpop(i+1,:) = [pop(i+1,1:cpoint),pop(i,cpoint+1:py)];%截取第i+1行交叉点前面的和第i行交叉点后面的进行连接
else %如果随机数大于交叉概率,也就是不进行交叉直接把pop中的种群数赋给交叉后的种群数newpop(i,:) = pop(i,:);newpop(i+1,:) = pop(i+1,:);
end

end
end

function [newpop] = mutation(pop,pm)
[px,py] = size(pop);
newpop = ones(size(pop));
for i = 1:px %循环从第一行到最后一行
if(rand<pm) %如果随机数小于变异概率就发生变异
mpoint = round(rand*py); %随即产生变异点的位置
if mpoint <= 0
mpoint = 1;
end
newpop(i,:) = pop(i,:);
if newpop(i,mpoint) == 0
newpop(i,mpoint) = 1;
else newpop(i,mpoint) == 1
newpop(i,mpoint) = 0;
%对第i行变异点取反
end
else newpop(i,:) = pop(i,:);
end
end
end

function [bestindividual, bestfit] = best(pop,fitvalue)
[px,py] = size(pop); %获取矩阵的行数和列数,size()将矩阵的行数给px,列数给py
bestindividual = pop(1,:);%把第一行的所有列弹出 赋给bestindividual,pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
bestfit = fitvalue(1); %这两行相当于在初始化最佳个体和最佳适应度值
for i = 2:px %for循环从第二行开始,
if fitvalue(i)>bestfit %如果改行的适应值大于最佳适应值,
bestindividual = pop(i,:);%把该行作为最佳个体,
bestfit = fitvalue(i);%该行适应值为最佳适应值
end
end
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 邬长安,余楠.基于遗传算法的自适应最优阈值图像分割技术研究[J].光盘技术. 2007,(01)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【阙值分割】基于matlab遗传算法自适应多阈值图像分割【含Matlab源码 1460期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893208

相关文章

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

全解析CSS Grid 的 auto-fill 和 auto-fit 内容自适应

《全解析CSSGrid的auto-fill和auto-fit内容自适应》:本文主要介绍了全解析CSSGrid的auto-fill和auto-fit内容自适应的相关资料,详细内容请阅读本文,希望能对你有所帮助... css  Grid 的 auto-fill 和 auto-fit/* 父元素 */.gri

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

Android实现一键录屏功能(附源码)

《Android实现一键录屏功能(附源码)》在Android5.0及以上版本,系统提供了MediaProjectionAPI,允许应用在用户授权下录制屏幕内容并输出到视频文件,所以本文将基于此实现一个... 目录一、项目介绍二、相关技术与原理三、系统权限与用户授权四、项目架构与流程五、环境配置与依赖六、完整

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)