torchvision transforms 的二十二个方法

2024-04-11 01:20

本文主要是介绍torchvision transforms 的二十二个方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 裁剪Crop

1.随机裁剪:transforms.RandomCrop
class torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant') 功能:依据给定的size随机裁剪 参数: size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size) padding-(sequence or int, optional),此参数是设置填充多少个pixel。 当为int时,图像上下左右均填充int个,例如padding=4,则上下左右均填充4个pixel,若为3232,则会变成4040。 当为sequence时,若有2个数,则第一个数表示左右扩充多少,第二个数表示上下的。当有4个数时,则为左,上,右,下。 fill- (int or tuple) 填充的值是什么(仅当填充模式为constant时有用)。int时,各通道均填充该值,当长度为3的tuple时,表示RGB通道需要填充的值。 padding_mode- 填充模式,这里提供了4种填充模式,1.constant,常量。2.edge 按照图片边缘的像素值来填充。3.reflect,暂不了解。 4. symmetric,暂不了解。

2.中心裁剪:transforms.CenterCrop
class torchvision.transforms.CenterCrop(size) 功能:依据给定的size从中心裁剪 参数: size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size)

3.随机长宽比裁剪 transforms.RandomResizedCrop
class torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=2) 功能:随机大小,随机长宽比裁剪原始图片,最后将图片resize到设定好的size 参数: size- 输出的分辨率 scale- 随机crop的大小区间,如scale=(0.08, 1.0),表示随机crop出来的图片会在的0.08倍至1倍之间。 ratio- 随机长宽比设置 interpolation- 插值的方法,默认为双线性插值(PIL.Image.BILINEAR)

4.上下左右中心裁剪:transforms.FiveCrop
class torchvision.transforms.FiveCrop(size) 功能:对图片进行上下左右以及中心裁剪,获得5张图片,返回一个4D-tensor 参数: size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size)

5.上下左右中心裁剪后翻转: transforms.TenCrop
class torchvision.transforms.TenCrop(size, vertical_flip=False) 功能:对图片进行上下左右以及中心裁剪,然后全部翻转(水平或者垂直),获得10张图片,返回一个4D-tensor。 参数: size- (sequence or int),若为sequence,则为(h,w),若为int,则(size,size) vertical_flip (bool) - 是否垂直翻转,默认为flase,即默认为水平翻转

二、翻转和旋转——Flip and Rotation

6.依概率p水平翻转transforms.RandomHorizontalFlip
class torchvision.transforms.RandomHorizontalFlip(p=0.5) 功能:依据概率p对PIL图片进行水平翻转 参数: p- 概率,默认值为0.5

7.依概率p垂直翻转transforms.RandomVerticalFlip
class torchvision.transforms.RandomVerticalFlip(p=0.5) 功能:依据概率p对PIL图片进行垂直翻转 参数: p- 概率,默认值为0.5

8.随机旋转:transforms.RandomRotation
class torchvision.transforms.RandomRotation(degrees, resample=False, expand=False, center=None) 功能:依degrees随机旋转一定角度 参数: degress- (sequence or float or int) ,若为单个数,如 30,则表示在(-30,+30)之间随机旋转 若为sequence,如(30,60),则表示在30-60度之间随机旋转 resample- 重采样方法选择,可选 PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC,默认为最近邻 expand- ? center- 可选为中心旋转还是左上角旋转


三、图像变换

9.resize:transforms.Resize
class torchvision.transforms.Resize(size, interpolation=2) 功能:重置图像分辨率 参数: size- If size is an int, if height > width, then image will be rescaled to (size * height / width, size),所以建议size设定为h*w interpolation- 插值方法选择,默认为PIL.Image.BILINEAR

10.标准化:transforms.Normalize
class torchvision.transforms.Normalize(mean, std) 功能:对数据按通道进行标准化,即先减均值,再除以标准差,注意是 hwc

11.转为tensor:transforms.ToTensor
class torchvision.transforms.ToTensor 功能:将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1] 注意事项:归一化至[0-1]是直接除以255,若自己的ndarray数据尺度有变化,则需要自行修改。

12.填充:transforms.Pad
class torchvision.transforms.Pad(padding, fill=0, padding_mode='constant') 功能:对图像进行填充 参数: padding-(sequence or int, optional),此参数是设置填充多少个pixel。 当为int时,图像上下左右均填充int个,例如padding=4,则上下左右均填充4个pixel,若为3232,则会变成4040。 当为sequence时,若有2个数,则第一个数表示左右扩充多少,第二个数表示上下的。当有4个数时,则为左,上,右,下。 fill- (int or tuple) 填充的值是什么(仅当填充模式为constant时有用)。int时,各通道均填充该值,当长度为3的tuple时,表示RGB通道需要填充的值。 padding_mode- 填充模式,这里提供了4种填充模式,1.constant,常量。2.edge 按照图片边缘的像素值来填充。3.reflect 4. symmetric,


13.修改亮度、对比度和饱和度:transforms.ColorJitter
class torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) 功能:修改修改亮度、对比度和饱和度

14.转灰度图:transforms.Grayscale
class torchvision.transforms.Grayscale(num_output_channels=1) 功能:将图片转换为灰度图 参数: num_output_channels- (int) ,当为1时,正常的灰度图,当为3时, 3 channel with r == g == b

15.线性变换:transforms.LinearTransformation()
class torchvision.transforms.LinearTransformation(transformation_matrix) 功能:对矩阵做线性变化,可用于白化处理! whitening: zero-center the data, compute the data covariance matrix 参数: transformation_matrix (Tensor) – tensor [D x D], D = C x H x W

16.仿射变换:transforms.RandomAffine
class torchvision.transforms.RandomAffine(degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0) 功能:仿射变换

17.依概率p转为灰度图:transforms.RandomGrayscale
class torchvision.transforms.RandomGrayscale(p=0.1) 功能:依概率p将图片转换为灰度图,若通道数为3,则3 channel with r == g == b

18.将数据转换为PILImage:transforms.ToPILImage
class torchvision.transforms.ToPILImage(mode=None) 功能:将tensor 或者 ndarray的数据转换为 PIL Image 类型数据 参数: mode- 为None时,为1通道, mode=3通道默认转换为RGB,4通道默认转换为RGBA

19.transforms.Lambda
Apply a user-defined lambda as a transform. 暂不了解,待补充。

四、对transforms操作,使数据增强更灵活
PyTorch不仅可设置对图片的操作,还可以对这些操作进行随机选择、组合

20.transforms.RandomChoice(transforms)
功能:从给定的一系列transforms中选一个进行操作,randomly picked from a list

21.transforms.RandomApply(transforms, p=0.5)
功能:给一个transform加上概率,以一定的概率执行该操作

22.transforms.RandomOrder
功能:将transforms中的操作顺序随机打乱

这篇关于torchvision transforms 的二十二个方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892695

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处