Python | 海表面温度(SST) | 长期趋势和异常分析

2024-04-10 23:28

本文主要是介绍Python | 海表面温度(SST) | 长期趋势和异常分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

趋势和异常分析(Trend and anomaly)在大气和海洋学研究中被广泛用于探测长期变化。

趋势分析(Trend Analysis):

趋势分析是一种用于检测数据随时间的变化趋势的方法。在海洋学和大气学中,常见的趋势分析包括海表面温度(SST)、海平面上升、气温变化等。趋势分析通常包括以下步骤:

  • 数据预处理:首先需要对数据进行预处理,包括去除季节循环、填补缺失值等。
  • 计算趋势:采用统计方法(如线性回归、非线性回归)来计算数据随时间的变化趋势。常见的趋势计算方法包括最小二乘法、曲线拟合等。
  • 趋势显著性检验:对计算得到的趋势进行显著性检验,以确定趋势是否具有统计显著性。常见的显著性检验方法包括t检验、F检验等。
  • 趋势可视化:将计算得到的趋势以图形方式呈现,通常使用折线图或柱状图来展示数据随时间的变化趋势。

趋势分析的结果可以帮助科学家们了解气候系统的长期演变趋势,从而预测未来可能的变化情况。

异常分析(Anomaly Analysis):

异常分析是一种用于检测数据中非正常事件或突发事件的方法。在海洋学和大气学中,异常分析通常用于检测气候系统中的异常事件,如El Niño事件、极端气候事件等。异常分析通常包括以下步骤:

  • 基准确定:选择一个合适的基准期,通常是一段相对稳定的时间段,用于计算异常值。
  • 计算异常:将观测数据与基准期的平均值进行比较,计算出每个时间点的异常值。异常值表示该时间点的数据与基准期相比的偏离程度。
  • 异常检测:对计算得到的异常值进行检测,识别出突发事件或非正常事件。
  • 异常可视化:将计算得到的异常值以图形方式呈现,通常使用折线图或柱状图来展示异常事件的发生情况。
    异常分析的结果可以帮助科学家们理解气候系统中的非正常事件,从而采取相应的应对措施或预测未来可能发生的异常情况。

本案例分析以海表温度为例,计算了1982年至2016年全球每十年的温度变化率。此外,还给出了其面积加权的全球月海温异常时间序列。

  • 数据来源:
    NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) V2

  • 下载地址:
    https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html

image

NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) V2

  • 空间分辨率:
1.0纬度 x 1.0经度全球网格(180x360)。
  • 覆盖范围
89.5 N-89.5 S 0.5 E-359.5 E.

因为oisst是一个插值数据,所以它覆盖了海洋和陆地。
因此,必须同时使用陆地-海洋掩膜数据,可以从如下网站获得:

https://psl.noaa.gov/repository/entry/show?entryid=b5492d1c-7d9c-47f7-b058-e84030622bbd

mask data

1. 加载基础库

import numpy as np
import datetime 
import cftime
from netCDF4 import Dataset as netcdf # netcdf4-python module
import netCDF4 as nc
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
import matplotlib.dates as mdates
from matplotlib.dates import MonthLocator, WeekdayLocator, DateFormatter
import matplotlib.ticker as ticker
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 15, 6
import warnings
warnings.simplefilter('ignore')# Your code continues here# ================================================================================================
# Author: %(Jianpu)s | Affiliation: Hohai
# Email : %(email)s
# Last modified: 2024-04-04 12:28:06
# Filename: Trend and Anomaly Analyses.py
# Description:
# =================================================================================================

2. 读取数据、提取变量

2.1 Read SST


ncset= netcdf(r'G:/code_daily/sst.mnmean.nc')
lons = ncset['lon'][:]  
lats = ncset['lat'][:]           
sst  = ncset['sst'][1:421,:,:]    # 1982-2016 to make it divisible by 12
nctime = ncset['time'][1:421]
t_unit = ncset['time'].unitstry :t_cal =ncset['time'].calendar
except AttributeError : # Attribute doesn't existt_cal = u"gregorian" # or standardnt, nlat, nlon = sst.shape
ngrd = nlon*nlat

2.2 解析时间

datevar = nc.num2date(nctime,units = "days since 1800-1-1 00:00:00")
print(datevar.shape)datevar[0:5]

2.3读取 mask (1=ocen, 0=land)

lmfile = 'G:/code_daily/lsmask.nc'
lmset  = netcdf(lmfile)
lsmask = lmset['mask'][0,:,:]
lsmask = lsmask-1num_repeats = nt
lsm = np.stack([lsmask]*num_repeats,axis=-1).transpose((2,0,1))
lsm.shape

2.3 将海温的陆地区域进行掩膜

sst = np.ma.masked_array(sst, mask=lsm)
3. Trend Analysis
3.1 计算线性趋势
sst_grd  = sst.reshape((nt, ngrd), order='F') 
x        = np.linspace(1,nt,nt)#.reshape((nt,1))
sst_rate = np.empty((ngrd,1))
sst_rate[:,:] = np.nanfor i in range(ngrd): y = sst_grd[:,i]   if(not np.ma.is_masked(y)):         z = np.polyfit(x, y, 1)sst_rate[i,0] = z[0]*120.0#slope, intercept, r_value, p_value, std_err = stats.linregress(x, sst_grd[:,i])#sst_rate[i,0] = slope*120.0     sst_rate = sst_rate.reshape((nlat,nlon), order='F')

3 绘制趋势空间分布

spacia distribution

plt.figure(dpi=200)
m = Basemap(projection='cyl', llcrnrlon=min(lons), llcrnrlat=min(lats),urcrnrlon=max(lons), urcrnrlat=max(lats))x, y = m(*np.meshgrid(lons, lats))
clevs = np.linspace(-0.5, 0.5, 21)
cs = m.contourf(x, y, sst_rate.squeeze(), clevs, cmap=plt.cm.RdBu_r)
m.drawcoastlines()
#m.fillcontinents(color='#000000',lake_color='#99ffff')cb = m.colorbar(cs)
cb.set_label('SST Changing Rate ($^oC$/decade)', fontsize=12)
plt.title('SST Changing Rate ($^oC$/decade)', fontsize=16)

4. Anomaly analysis

4.1 转换数据大小为: (nyear) x (12) x (lat x lon)

sst_grd_ym  = sst.reshape((12,round(nt/12), ngrd), order='F').transpose((1,0,2))
sst_grd_ym.shape

4.2 计算季节趋势

sst_grd_clm = np.mean(sst_grd_ym, axis=0)
sst_grd_clm.shape

4.3 去除季节趋势

sst_grd_anom = (sst_grd_ym - sst_grd_clm).transpose((1,0,2)).reshape((nt, nlat, nlon), order='F')
sst_grd_anom.shape

4.4 计算区域权重

4.4.1 确认经纬度的方向

print(lats[0:12])
print(lons[0:12])

4.4.2 计算随纬度变化的区域权重

lonx, latx = np.meshgrid(lons, lats)
weights = np.cos(latx * np.pi / 180.)
print(weights.shape)

4.4.3 计算全球、北半球、南半球的有效网格总面积

sst_glb_avg = np.zeros(nt)
sst_nh_avg  = np.zeros(nt)
sst_sh_avg  = np.zeros(nt)for it in np.arange(nt):sst_glb_avg[it] = np.ma.average(sst_grd_anom[it, :], weights=weights)sst_nh_avg[it]  = np.ma.average(sst_grd_anom[it,0:round(nlat/2),:],    weights=weights[0:round(nlat/2),:])sst_sh_avg[it]  = np.ma.average(sst_grd_anom[it,round(nlat/2):nlat,:], weights=weights[round(nlat/2):nlat,:])

4.5 转换时间为字符串格式

datestr = [date.strftime('%Y-%m-%d') for date in datevar]

5. 绘制海温异常时间序列

temporal distribution

fig, ax = plt.subplots(1, 1 , figsize=(15,5),dpi=200)ax.plot(datestr[::12], sst_glb_avg[::12], color='b', linewidth=2, label='GLB')
ax.plot(datestr[::12], sst_nh_avg[::12],  color='r', linewidth=2, label='NH')
ax.plot(datestr[::12], sst_sh_avg[::12],  color='g', linewidth=2, label='SH')
ax.set_xticklabels(datestr[::12], rotation=45)
ax.axhline(0, linewidth=1, color='k')
ax.legend()
ax.set_title('Monthly SST Anomaly Time Series (1982 - 2016)', fontsize=16)
ax.set_xlabel('Month/Year ', fontsize=12)
ax.set_ylabel('$^oC$', fontsize=12)
ax.set_ylim(-0.6, 0.6)
fig.set_figheight(9)# rotate and align the tick labels so they look better
fig.autofmt_xdate()
# use a more precise date string for the x axis locations in the toolbar
ax.fmt_xdata = mdates.DateFormatter('%Y')

http://unidata.github.io/netcdf4-python/

http://www.scipy.org/

本文由mdnice多平台发布

这篇关于Python | 海表面温度(SST) | 长期趋势和异常分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892451

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker