Python | 海表面温度(SST) | 长期趋势和异常分析

2024-04-10 23:28

本文主要是介绍Python | 海表面温度(SST) | 长期趋势和异常分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

趋势和异常分析(Trend and anomaly)在大气和海洋学研究中被广泛用于探测长期变化。

趋势分析(Trend Analysis):

趋势分析是一种用于检测数据随时间的变化趋势的方法。在海洋学和大气学中,常见的趋势分析包括海表面温度(SST)、海平面上升、气温变化等。趋势分析通常包括以下步骤:

  • 数据预处理:首先需要对数据进行预处理,包括去除季节循环、填补缺失值等。
  • 计算趋势:采用统计方法(如线性回归、非线性回归)来计算数据随时间的变化趋势。常见的趋势计算方法包括最小二乘法、曲线拟合等。
  • 趋势显著性检验:对计算得到的趋势进行显著性检验,以确定趋势是否具有统计显著性。常见的显著性检验方法包括t检验、F检验等。
  • 趋势可视化:将计算得到的趋势以图形方式呈现,通常使用折线图或柱状图来展示数据随时间的变化趋势。

趋势分析的结果可以帮助科学家们了解气候系统的长期演变趋势,从而预测未来可能的变化情况。

异常分析(Anomaly Analysis):

异常分析是一种用于检测数据中非正常事件或突发事件的方法。在海洋学和大气学中,异常分析通常用于检测气候系统中的异常事件,如El Niño事件、极端气候事件等。异常分析通常包括以下步骤:

  • 基准确定:选择一个合适的基准期,通常是一段相对稳定的时间段,用于计算异常值。
  • 计算异常:将观测数据与基准期的平均值进行比较,计算出每个时间点的异常值。异常值表示该时间点的数据与基准期相比的偏离程度。
  • 异常检测:对计算得到的异常值进行检测,识别出突发事件或非正常事件。
  • 异常可视化:将计算得到的异常值以图形方式呈现,通常使用折线图或柱状图来展示异常事件的发生情况。
    异常分析的结果可以帮助科学家们理解气候系统中的非正常事件,从而采取相应的应对措施或预测未来可能发生的异常情况。

本案例分析以海表温度为例,计算了1982年至2016年全球每十年的温度变化率。此外,还给出了其面积加权的全球月海温异常时间序列。

  • 数据来源:
    NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) V2

  • 下载地址:
    https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html

image

NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) V2

  • 空间分辨率:
1.0纬度 x 1.0经度全球网格(180x360)。
  • 覆盖范围
89.5 N-89.5 S 0.5 E-359.5 E.

因为oisst是一个插值数据,所以它覆盖了海洋和陆地。
因此,必须同时使用陆地-海洋掩膜数据,可以从如下网站获得:

https://psl.noaa.gov/repository/entry/show?entryid=b5492d1c-7d9c-47f7-b058-e84030622bbd

mask data

1. 加载基础库

import numpy as np
import datetime 
import cftime
from netCDF4 import Dataset as netcdf # netcdf4-python module
import netCDF4 as nc
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
import matplotlib.dates as mdates
from matplotlib.dates import MonthLocator, WeekdayLocator, DateFormatter
import matplotlib.ticker as ticker
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 15, 6
import warnings
warnings.simplefilter('ignore')# Your code continues here# ================================================================================================
# Author: %(Jianpu)s | Affiliation: Hohai
# Email : %(email)s
# Last modified: 2024-04-04 12:28:06
# Filename: Trend and Anomaly Analyses.py
# Description:
# =================================================================================================

2. 读取数据、提取变量

2.1 Read SST


ncset= netcdf(r'G:/code_daily/sst.mnmean.nc')
lons = ncset['lon'][:]  
lats = ncset['lat'][:]           
sst  = ncset['sst'][1:421,:,:]    # 1982-2016 to make it divisible by 12
nctime = ncset['time'][1:421]
t_unit = ncset['time'].unitstry :t_cal =ncset['time'].calendar
except AttributeError : # Attribute doesn't existt_cal = u"gregorian" # or standardnt, nlat, nlon = sst.shape
ngrd = nlon*nlat

2.2 解析时间

datevar = nc.num2date(nctime,units = "days since 1800-1-1 00:00:00")
print(datevar.shape)datevar[0:5]

2.3读取 mask (1=ocen, 0=land)

lmfile = 'G:/code_daily/lsmask.nc'
lmset  = netcdf(lmfile)
lsmask = lmset['mask'][0,:,:]
lsmask = lsmask-1num_repeats = nt
lsm = np.stack([lsmask]*num_repeats,axis=-1).transpose((2,0,1))
lsm.shape

2.3 将海温的陆地区域进行掩膜

sst = np.ma.masked_array(sst, mask=lsm)
3. Trend Analysis
3.1 计算线性趋势
sst_grd  = sst.reshape((nt, ngrd), order='F') 
x        = np.linspace(1,nt,nt)#.reshape((nt,1))
sst_rate = np.empty((ngrd,1))
sst_rate[:,:] = np.nanfor i in range(ngrd): y = sst_grd[:,i]   if(not np.ma.is_masked(y)):         z = np.polyfit(x, y, 1)sst_rate[i,0] = z[0]*120.0#slope, intercept, r_value, p_value, std_err = stats.linregress(x, sst_grd[:,i])#sst_rate[i,0] = slope*120.0     sst_rate = sst_rate.reshape((nlat,nlon), order='F')

3 绘制趋势空间分布

spacia distribution

plt.figure(dpi=200)
m = Basemap(projection='cyl', llcrnrlon=min(lons), llcrnrlat=min(lats),urcrnrlon=max(lons), urcrnrlat=max(lats))x, y = m(*np.meshgrid(lons, lats))
clevs = np.linspace(-0.5, 0.5, 21)
cs = m.contourf(x, y, sst_rate.squeeze(), clevs, cmap=plt.cm.RdBu_r)
m.drawcoastlines()
#m.fillcontinents(color='#000000',lake_color='#99ffff')cb = m.colorbar(cs)
cb.set_label('SST Changing Rate ($^oC$/decade)', fontsize=12)
plt.title('SST Changing Rate ($^oC$/decade)', fontsize=16)

4. Anomaly analysis

4.1 转换数据大小为: (nyear) x (12) x (lat x lon)

sst_grd_ym  = sst.reshape((12,round(nt/12), ngrd), order='F').transpose((1,0,2))
sst_grd_ym.shape

4.2 计算季节趋势

sst_grd_clm = np.mean(sst_grd_ym, axis=0)
sst_grd_clm.shape

4.3 去除季节趋势

sst_grd_anom = (sst_grd_ym - sst_grd_clm).transpose((1,0,2)).reshape((nt, nlat, nlon), order='F')
sst_grd_anom.shape

4.4 计算区域权重

4.4.1 确认经纬度的方向

print(lats[0:12])
print(lons[0:12])

4.4.2 计算随纬度变化的区域权重

lonx, latx = np.meshgrid(lons, lats)
weights = np.cos(latx * np.pi / 180.)
print(weights.shape)

4.4.3 计算全球、北半球、南半球的有效网格总面积

sst_glb_avg = np.zeros(nt)
sst_nh_avg  = np.zeros(nt)
sst_sh_avg  = np.zeros(nt)for it in np.arange(nt):sst_glb_avg[it] = np.ma.average(sst_grd_anom[it, :], weights=weights)sst_nh_avg[it]  = np.ma.average(sst_grd_anom[it,0:round(nlat/2),:],    weights=weights[0:round(nlat/2),:])sst_sh_avg[it]  = np.ma.average(sst_grd_anom[it,round(nlat/2):nlat,:], weights=weights[round(nlat/2):nlat,:])

4.5 转换时间为字符串格式

datestr = [date.strftime('%Y-%m-%d') for date in datevar]

5. 绘制海温异常时间序列

temporal distribution

fig, ax = plt.subplots(1, 1 , figsize=(15,5),dpi=200)ax.plot(datestr[::12], sst_glb_avg[::12], color='b', linewidth=2, label='GLB')
ax.plot(datestr[::12], sst_nh_avg[::12],  color='r', linewidth=2, label='NH')
ax.plot(datestr[::12], sst_sh_avg[::12],  color='g', linewidth=2, label='SH')
ax.set_xticklabels(datestr[::12], rotation=45)
ax.axhline(0, linewidth=1, color='k')
ax.legend()
ax.set_title('Monthly SST Anomaly Time Series (1982 - 2016)', fontsize=16)
ax.set_xlabel('Month/Year ', fontsize=12)
ax.set_ylabel('$^oC$', fontsize=12)
ax.set_ylim(-0.6, 0.6)
fig.set_figheight(9)# rotate and align the tick labels so they look better
fig.autofmt_xdate()
# use a more precise date string for the x axis locations in the toolbar
ax.fmt_xdata = mdates.DateFormatter('%Y')

http://unidata.github.io/netcdf4-python/

http://www.scipy.org/

本文由mdnice多平台发布

这篇关于Python | 海表面温度(SST) | 长期趋势和异常分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892451

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar