存图方式【知识点】

2024-04-10 18:38
文章标签 知识点 方式 存图

本文主要是介绍存图方式【知识点】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

邻接矩阵


我们定义一个数组a[MAXN][MAXN]; 那么存图方式就是:
a[i][j]=val;
对于无向图,就代表i和j之间有一条权值为val的边,如果是
无权图,val=1。
对于有向图,就代表i->j(j->i你不清楚)有一条权值
为val的边,无权图的话val=1。
这样我们就能够用这样一个矩阵实现了图的存放,但是,如果点
的数量过大了怎么办呢?二维数组可是开不了很大的啊。比如
有50000个点。那么二位数组就存放不下了,那么我们就要借助
邻接表法了。

邻接表法


大家在前期的时候学STL的时候学过vector,而邻接表就是
用vector来进行存放的
代码实现(以无向图为例)
vector <int > e[ MAXN ]; // edge
vector <int > v[ MAXN ]; // val
cin >>a>>b>>c;
e[a]. push_back (b);
v[a]. push_back (c);
e[b]. push_back (a);
v[b]. push_back (c);

 

 

前向星.

 

前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序,

并记录下以某个点为起点的所有边在数组中的起始位置和存储长度,那么前向星就构造好了.

 

用len[i]来记录所有以i为起点的边在数组中的存储长度.

用head[i]记录以i为边集在数组中的第一个存储位置.

 

那么对于下图:

 

 

 

我们输入边的顺序为:

 

1 2

2 3

3 4

1 3

4 1

1 5

4 5

 

那么排完序后就得到:

 

编号:     1      2      3      4      5      6      7

起点u:    1      1      1      2      3      4      4

终点v:    2      3      5      3      4      1      5

 

得到:

 

head[1] = 1    len[1] = 3

head[2] = 4    len[2] = 1

head[3] = 5    len[3] = 1

head[4] = 6    len[4] = 2

 

但是利用前向星会有排序操作,如果用快排时间至少为O(nlog(n))

链式前向星

我们用head[i]表示以i为起点的最后一条边的储存位置,
next[i]表示与第i条边同起点的上一条边的储存位置,e[i]表
示第i条边的终点。

 

 

我们输入边的顺序为:

 

1 2

2 3

3 4

1 3

4 1

1 5

4 5

加边
struct Edge
{
int next ;
int e;
int w;
} edge [ MAXN ];edge[i].next表示同起点的上一条边,edge[i].e代表这条边的终点,
edge[i].w为权值。void add (int u,int v,int w)
{
edge [cnt ].w = w;
edge [cnt ]. to = v;
edge [cnt ]. next = head [u];
head [u] = cnt ++;
}
cnt初始化为0,head初始化为-1。
边的遍历,遍历以u为起点的所有边
for (int i= head [u];~i;i= edge [i]. next )
{
cout <<u<<" ->" <<edge [i].e<< endl ;
}
倒序遍历
#include<bits/stdc++.h>
using namespace std;
#define MAXN 10050
struct EDGE
{int w;//权值 int next;//与该边同起点的上一条边的位置 int e;//边的终点 
}edge[MAXN];
int cnt; 
int head[MAXN];//以i为起点的最后一条边
void add(int u,int v,int w)
{edge[cnt].w=w;edge[cnt].e=v;edge[cnt].next=head[u];head[u]=cnt++;
} int main()
{memset(head,0,sizeof(head));cnt=1;int n,a,b,c;cin>>n;for(int i=1;i<=n;i++){cin>>a>>b>>c;add(a,b,c);}int start;cin>>start;for(int i=head[start];i!=0;i=edge[i].next){cout<<start<<"->"<<edge[i].e<<" "<<edge[i].w<<endl;}return 0;
}

 

这篇关于存图方式【知识点】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891830

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

Mybatis的分页实现方式

《Mybatis的分页实现方式》MyBatis的分页实现方式主要有以下几种,每种方式适用于不同的场景,且在性能、灵活性和代码侵入性上有所差异,对Mybatis的分页实现方式感兴趣的朋友一起看看吧... 目录​1. 原生 SQL 分页(物理分页)​​2. RowBounds 分页(逻辑分页)​​3. Page

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

RedisTemplate默认序列化方式显示中文乱码的解决

《RedisTemplate默认序列化方式显示中文乱码的解决》本文主要介绍了SpringDataRedis默认使用JdkSerializationRedisSerializer导致数据乱码,文中通过示... 目录1. 问题原因2. 解决方案3. 配置类示例4. 配置说明5. 使用示例6. 验证存储结果7.

Python程序打包exe,单文件和多文件方式

《Python程序打包exe,单文件和多文件方式》:本文主要介绍Python程序打包exe,单文件和多文件方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python 脚本打成exe文件安装Pyinstaller准备一个ico图标打包方式一(适用于文件较少的程

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh