蒙特卡洛方法【强化学习】

2024-04-10 16:04

本文主要是介绍蒙特卡洛方法【强化学习】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习笔记

主要基于b站西湖大学赵世钰老师的【强化学习的数学原理】课程,个人觉得赵老师的课件深入浅出,很适合入门.

第一章 强化学习基本概念
第二章 贝尔曼方程
第三章 贝尔曼最优方程
第四章 值迭代和策略迭代
第五章 强化学习实践—GridWorld
第六章 蒙特卡洛方法


文章目录

  • 强化学习笔记
  • 一、 Motivating example
  • 二、 MC-Basic method
  • 三、MC Exploring Starts
  • 四、MC without exploring starts
  • 五、参考资料


前面介绍的值迭代和策略迭代算法,我们都假设模型已知,也就是环境的动态特性(比如各种概率)我们都预先知道。然而在实际问题中,我们可能对环境的动态特性并不是那么清楚,但是我们可以得到足够多的数据,那么我们同样可以用强化学习来建模解决这个问题,这类不利用模型的算法被称为Model-free的方法。Monte Carlo方法便是一种Model-free的方法。

一、 Motivating example

下面我们通过一个例子对Model-free有一个更加直观的了解,以及Monte Carlo方法是怎么做的,这个例子是概率论中的典型例子——Monty Hall Problem.

Suppose you’re on a game show, and you’re given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what’s behind the other doors, opens another door, say No. 3, which has a goat. He then says to you, ‘Do you want to pick door No. 2?’ Is it to your advantage to take the switch?

由概率论的基本知识我们可以算出每种情况的概率如下:

  1. 不改变选择,选中car的概率为 p = 1 3 p=\frac13 p=31
  2. 改变选择,选中car的概率 p = 2 3 p=\frac23 p=32.

如果我们不能通过理论知识得到这个概率,能不能通过做实验来得到这个结果呢?这就是Monte Carlo要做的事,我们可以通过python编程来模拟这个游戏:

import numpy as np
import matplotlib.pyplot as pltdef game(switch):doors = [0, 0, 1]  # 0代表山羊,1代表汽车np.random.shuffle(doors)# 参赛者初始选择一扇门choice = np.random.randint(3)# 主持人打开一扇有山羊的门reveal = np.random.choice([i for i in range(3) if i != choice and doors[i] == 0])if switch:new_choice = [i for i in range(3) if i != choice and i != reveal][0]return doors[new_choice]  # 返回参赛者的奖励结果,1代表获得汽车,0代表获得山羊else:return doors[choice]# 模拟实验
num_trials = 2000
switch_rewards = []     # 记录每次选择换门后的奖励
no_switch_rewards = []  # 记录每次选择坚持原先选择的奖励
switch_wins = 0     # 记录换门策略的获胜次数
no_switch_wins = 0  # 记录坚持原先选择的获胜次数for i in range(num_trials):# 选择换门switch_result = game(switch=True)switch_rewards.append(switch_result)if switch_result == 1:switch_wins += 1# 选择坚持原先选择的门no_switch_result = game(switch=False)no_switch_rewards.append(no_switch_result)if no_switch_result == 1:no_switch_wins += 1# 计算每次试验的平均奖励
switch_avg_rewards = np.cumsum(switch_rewards) / (np.arange(num_trials) + 1)
no_switch_avg_rewards = np.cumsum(no_switch_rewards) / (np.arange(num_trials) + 1)# 绘制平均奖励曲线
plt.figure(dpi=150)
plt.plot(np.arange(num_trials), switch_avg_rewards, label='换门')
plt.plot(np.arange(num_trials), no_switch_avg_rewards, label='坚持原先选择')
plt.xlabel('试验次数')
plt.ylabel('平均奖励')
plt.title('2000次试验中的平均奖励')
plt.legend()
plt.show()# 输出获胜概率
switch_win_percentage = switch_wins / num_trials
no_switch_win_percentage = no_switch_wins / num_trials
print("选择换门的获胜概率:", switch_win_percentage)
print("选择坚持原先选择的获胜概率:", no_switch_win_percentage)

结果如下:

output

我们可以看到,随着实验次数的增加,概率逐渐收敛到理论值,而这有大数定理进行理论保证.通过这个例子我们可以看到即使我们不知道模型的某些性质(这里是p),但我们可以通过Monte Carlo的方法来得到近似值.

截屏2024-04-09 17.03.00

  • 第一个等式说明样本均值是 E [ X ] \mathbb{E}[X] E[X]的无偏估计;

二、 MC-Basic method

我们回顾一下Policy iteration 的核心算法步骤:
{ Policy evaluation:  v π k = r π k + γ P π k v π k Policy improvement:  π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v π k ) \left\{\begin{array}{l}\text{Policy evaluation: }v_{\pi_k}=r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k}\\\text{Policy improvement: }\pi_{k+1}=\arg\max_{\pi}(r_{\pi}+\gamma P_{\pi}v_{\pi_k})\end{array}\right. {Policy evaluation: vπk=rπk+γPπkvπkPolicy improvement: πk+1=argmaxπ(rπ+γPπvπk)
其中我们将PI展开如下:
π k + 1 ( s ) = arg ⁡ max ⁡ π ∑ a π ( a ∣ s ) [ ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v π k ( s ′ ) ] = arg ⁡ max ⁡ π ∑ a π ( a ∣ s ) q π k ( s , a ) , s ∈ S \begin{aligned}\pi_{k+1}(s)&=\arg\max_\pi\sum_a\pi(a|s)\left[\sum_rp(r|s,a)r+\gamma\sum_{s'}p(s'|s,a)v_{\pi_k}(s')\right]\\&=\arg\max_\pi\sum_a\pi(a|s)q_{\pi_k}(s,a),\quad s\in\mathcal{S}\end{aligned} πk+1(s)=argπmaxaπ(as)[rp(rs,a)r+γsp(ss,a)vπk(s)]=argπmaxaπ(as)qπk(s,a),sS
从上面的表达式我们可以看到,无论是算 v v v还是 q q q都需要知道模型的概率 p ( s ′ ∣ s , a ) p(s'|s,a) p(ss,a),但在Model-free算法里我们不知道 p p p,所以需要用Monte Carlo的方法进行估计,但是在这里我们不估计 p p p,而是直接估计 q ( s , a ) q(s,a) q(s,a),因为有了 p p p还需要算一下 q q q,所以直接估计 q q q更高效,下面给出伪代码.

截屏2024-04-09 16.40.05

其核心思想就是通过Monte Carlo的方法来估计所有的 q ( s , a ) q(s,a) q(s,a),通过实验得到很多 q ( s , a ) q(s,a) q(s,a)的数据,然后用均值作为其准确值的估计.

截屏2024-04-09 16.47.35

三、MC Exploring Starts

在上面的算法中,给定一个策略 π \pi π,我们可以得到如下的一个episode:

截屏2024-04-09 17.08.30

  • 每一个episode包含多个 ( s , a ) (s,a) (s,a),但在上面的算法中我们只用来计算第一个 ( s , a ) (s,a) (s,a) q q q
  • 显然我们可以充分利用每一个episode的数据

截屏2024-04-09 17.10.37

  • 每个episode的数据只用来计算第一个 q ( s , a ) q(s,a) q(s,a)的值被称为first-visit method;
  • 每个episode的数据用来计算episode中每个 q ( s , a ) q(s,a) q(s,a)的值被称为every-visit method.

截屏2024-04-09 17.17.04

Note:

  1. 要确保所有 ( s , a ) (s,a) (s,a)都被计算到,Exploring Starts意味着我们需要从每个 ( s , a ) (s,a) (s,a)对开始生成足够多的episode.
  2. 在实践中,该算法很难实现的。对于许多应用,特别是那些涉及与环境的物理交互的应用,很难从每个state-action pair.作为起始点得到一段episode.
  3. 因此,理论和实践之间存在差距。我们可以去掉Exploring Starts的假设吗?答案是肯定的,可以通过使用soft policy来实现这一点。

四、MC without exploring starts

Soft Policy

如果一个策略 π \pi π采取任何行动的概率为正,则称为soft policy.

  • 在soft policy下,一些足够长的episodes中可能就会包含每个状态-动作对足够多次;
  • 然后,我们不需要从每个状态-动作对开始采集大量episodes.

下面介绍一种soft policy—— ε \varepsilon ε -greedy策略:
π ( a ∣ s ) = { 1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) , for the greedy action,  ε ∣ A ( s ) ∣ , for the other  ∣ A ( s ) ∣ − 1 actions.  \pi(a \mid s)= \begin{cases}1-\frac{\varepsilon}{|\mathcal{A}(s)|}(|\mathcal{A}(s)|-1), & \text { for the greedy action, } \\ \frac{\varepsilon}{|\mathcal{A}(s)|}, & \text { for the other }|\mathcal{A}(s)|-1 \text { actions. }\end{cases} π(as)={1A(s)ε(A(s)1),A(s)ε, for the greedy action,  for the other A(s)1 actions. 
其中 ε ∈ [ 0 , 1 ] \varepsilon \in[0,1] ε[0,1] ∣ A ( s ) ∣ |\mathcal{A}(s)| A(s) s s s的总数。

  • 选择贪婪行动的机会总是大于其他行动,因为 1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) = 1 − ε + ε ∣ A ( s ) ∣ ≥ ε ∣ A ( s ) ∣ 1-\frac{\varepsilon}{|\mathcal{A}(s)|}(|\mathcal{A}(s)|-1)=1-\varepsilon+\frac{\varepsilon}{|\mathcal{A}(s)|} \geq \frac{\varepsilon}{|\mathcal{A}(s)|} 1A(s)ε(A(s)1)=1ε+A(s)εA(s)ε
  • 为什么使用 ε \varepsilon ε -greedy?Balance between exploitation and exploration
    • ε = 0 \varepsilon=0 ε=0​,它变得贪婪! Less exploration but more exploitation.
    • ε = 1 \varepsilon=1 ε=1时,它成为均匀分布。More exploration but less exploitation.

如何将 ε \varepsilon ε -greedy嵌入到MC-Basic的强化学习算法中?现在,将策略改进步骤改为:
π k + 1 ( s ) = arg ⁡ max ⁡ π ∈ Π ε ∑ a π ( a ∣ s ) q π k ( s , a ) , \pi_{k+1}(s)=\arg \max _{\pi \in \Pi_{\varepsilon}} \sum_a \pi(a \mid s) q_{\pi_k}(s, a), πk+1(s)=argπΠεmaxaπ(as)qπk(s,a),
其中 Π ε \Pi_{\varepsilon} Πε表示所有 ε \varepsilon ε -greedy策略的集合,其固定值为 ε \varepsilon ε。这里的最佳策略是
π k + 1 ( a ∣ s ) = { 1 − ∣ A ( s ) ∣ − 1 ∣ A ( s ) ∣ ε , a = a k ∗ , 1 ∣ A ( s ) ∣ ε , a ≠ a k ∗ . \pi_{k+1}(a \mid s)= \begin{cases}1-\frac{|\mathcal{A}(s)|-1}{|\mathcal{A}(s)|} \varepsilon, & a=a_k^*, \\ \frac{1}{|\mathcal{A}(s)|} \varepsilon, & a \neq a_k^* .\end{cases} πk+1(as)={1A(s)A(s)1ε,A(s)1ε,a=ak,a=ak.

  • MC ε \varepsilon ε -greedy与MC Exploring Starts相同,只是前者使用 ε \varepsilon ε -greedy策略。
  • 它不需要从每个(s,a)出发开始得到episode,但仍然需要以不同的形式访问所有状态-动作对

算法伪代码如下图所示:

截屏2024-04-10 14.28.36

五、参考资料

  1. Zhao, S… Mathematical Foundations of Reinforcement Learning. Springer Nature Press and Tsinghua University Press.
  2. Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

这篇关于蒙特卡洛方法【强化学习】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891517

相关文章

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

springboot中配置logback-spring.xml的方法

《springboot中配置logback-spring.xml的方法》文章介绍了如何在SpringBoot项目中配置logback-spring.xml文件来进行日志管理,包括如何定义日志输出方式、... 目录一、在src/main/resources目录下,也就是在classpath路径下创建logba

SQL Server中行转列方法详细讲解

《SQLServer中行转列方法详细讲解》SQL行转列、列转行可以帮助我们更方便地处理数据,生成需要的报表和结果集,:本文主要介绍SQLServer中行转列方法的相关资料,需要的朋友可以参考下... 目录前言一、为什么需要行转列二、行转列的基本概念三、使用PIVOT运算符进行行转列1.创建示例数据表并插入数

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

C# GC回收的方法实现

《C#GC回收的方法实现》本文主要介绍了C#GC回收的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、什么是 GC? 二、GC 管理的是哪部分内存? 三、GC 什么时候触发?️ 四、GC 如何判断一个对象是“垃圾