Ubuntu 20.04.06 PCL C++学习记录(二十一)【切记使用rm * -rf前先确认是否是对应文件夹】

本文主要是介绍Ubuntu 20.04.06 PCL C++学习记录(二十一)【切记使用rm * -rf前先确认是否是对应文件夹】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

@[TOC]PCL中点云分割模块的学习

学习背景

参考书籍:《点云库PCL从入门到精通》以及官方代码PCL官方代码链接,,PCL版本为1.10.0,CMake版本为3.16,测试点云下载地址

学习内容

根据欧几里得距离和需要保持的用户可自定义条件对点进行聚类,点云文件可从上述地址下载。

源代码及所用函数

源代码

#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/time.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/segmentation/conditional_euclidean_clustering.h>typedef pcl::PointXYZI PointTypeIO;
typedef pcl::PointXYZINormal PointTypeFull;bool enforceIntensitySimilarity (const PointTypeFull& point_a, const PointTypeFull& point_b, float /*squared_distance*/){if (std::abs (point_a.intensity - point_b.intensity) < 5.0f)return (true);elsereturn (false);
}bool enforceNormalOrIntensitySimilarity (const PointTypeFull& point_a, const PointTypeFull& point_b, float /*squared_distance*/){Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.getNormalVector3fMap (), point_b_normal = point_b.getNormalVector3fMap ();if (std::abs (point_a.intensity - point_b.intensity) < 5.0f)return (true);if (std::abs (point_a_normal.dot (point_b_normal)) > std::cos (30.0f / 180.0f * static_cast<float> (M_PI)))return (true);return (false);}boolcustomRegionGrowing (const PointTypeFull& point_a, const PointTypeFull& point_b, float squared_distance){Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.getNormalVector3fMap (), point_b_normal = point_b.getNormalVector3fMap ();if (squared_distance < 10000){if (std::abs (point_a.intensity - point_b.intensity) < 8.0f)return (true);if (std::abs (point_a_normal.dot (point_b_normal)) > std::cos (30.0f / 180.0f * static_cast<float> (M_PI)))return (true);}else{if (std::abs (point_a.intensity - point_b.intensity) < 3.0f)return (true);}return (false);}intmain (){// Data containers usedpcl::PointCloud<PointTypeIO>::Ptr cloud_in (new pcl::PointCloud<PointTypeIO>), cloud_out (new pcl::PointCloud<PointTypeIO>);pcl::PointCloud<PointTypeFull>::Ptr cloud_with_normals (new pcl::PointCloud<PointTypeFull>);pcl::IndicesClustersPtr clusters (new pcl::IndicesClusters), small_clusters (new pcl::IndicesClusters), large_clusters (new pcl::IndicesClusters);pcl::search::KdTree<PointTypeIO>::Ptr search_tree (new pcl::search::KdTree<PointTypeIO>);pcl::console::TicToc tt;// Load the input point cloudstd::cerr << "Loading...\n", tt.tic ();pcl::io::loadPCDFile ("/home/jojo/PointCloud/Statues_4.pcd", *cloud_in);std::cerr << ">> Done: " << tt.toc () << " ms, " << cloud_in->size () << " points\n";// Downsample the cloud using a Voxel Grid classstd::cerr << "Downsampling...\n", tt.tic ();pcl::VoxelGrid<PointTypeIO> vg;vg.setInputCloud (cloud_in);vg.setLeafSize (80.0, 80.0, 80.0);vg.setDownsampleAllData (true);vg.filter (*cloud_out);std::cerr << ">> Done: " << tt.toc () << " ms, " << cloud_out->size () << " points\n";// Set up a Normal Estimation class and merge data in cloud_with_normalsstd::cerr << "Computing normals...\n", tt.tic ();pcl::copyPointCloud (*cloud_out, *cloud_with_normals);pcl::NormalEstimation<PointTypeIO, PointTypeFull> ne;ne.setInputCloud (cloud_out);ne.setSearchMethod (search_tree);ne.setRadiusSearch (300.0);ne.compute (*cloud_with_normals);std::cerr << ">> Done: " << tt.toc () << " ms\n";// Set up a Conditional Euclidean Clustering classstd::cerr << "Segmenting to clusters...\n", tt.tic ();pcl::ConditionalEuclideanClustering<PointTypeFull> cec (true);cec.setInputCloud (cloud_with_normals);cec.setConditionFunction (&customRegionGrowing);cec.setClusterTolerance (500.0);cec.setMinClusterSize (cloud_with_normals->size () / 1000);cec.setMaxClusterSize (cloud_with_normals->size () / 5);cec.segment (*clusters);cec.getRemovedClusters (small_clusters, large_clusters);std::cerr << ">> Done: " << tt.toc () << " ms\n";// Using the intensity channel for lazy visualization of the outputfor (const auto& small_cluster : (*small_clusters))for (const auto& j : small_cluster.indices)(*cloud_out)[j].intensity = -2.0;for (const auto& large_cluster : (*large_clusters))for (const auto& j : large_cluster.indices)(*cloud_out)[j].intensity = +10.0;for (const auto& cluster : (*clusters)){int label = rand () % 8;for (const auto& j : cluster.indices)(*cloud_out)[j].intensity = label;}// Save the output point cloudstd::cerr << "Saving...\n", tt.tic ();pcl::io::savePCDFile ("output.pcd", *cloud_out);std::cerr << ">> Done: " << tt.toc () << " ms\n";return (0);}

CMakeLists.txt

cmake_minimum_required(VERSION 3.16 FATAL_ERROR)#指定CMake的最低版本要求为3.16
project(project)#设置项目名称
find_package(PCL 1.10 REQUIRED)#查找PCL库,要求版本为1.10或更高。
include_directories(${PCL_INCLUDE_DIRS})#将PCL库的头文件目录添加到包含路径中
link_directories(${PCL_LIBRARY_DIRS})#将PCL库的库文件目录添加到链接器搜索路径中。
add_definitions(${PCL_DEFINITIONS})#添加PCL库的编译器定义
add_executable (conditional_euclidean_clustering conditional_euclidean_clustering.cpp)
target_link_libraries (conditional_euclidean_clustering ${PCL_LIBRARIES})#将PCL库链接到可执行文件目标。

运行结果

注意:当使用 PCL 的标准 PCD 查看器打开输出点云时,按“5”将切换到强度通道可视化。 太小的簇将被涂成红色,太大的簇将被涂成蓝色,而实际的簇/感兴趣的物体将被随机着色为黄色和青色, 如果不按则都为一个颜色。
在这里插入图片描述

函数

补充内容

  • std::cout << “降采样中\n”,tt.tic();和std::cout << “降采样中\n”,tt.tic()<<std::endl;的区别
    1. std::cout << “降采样中\n”, tt.tic();
      这个语句使用了逗号运算符 ,。逗号运算符会按照从左到右的顺序依次计算其左右两侧的表达式,并返回右侧表达式的值。在这个语句中,首先会输出字符串 “降采样中\n”,然后计算 tt.tic(),但是 tt.tic() 的返回值会被丢弃,因为它没有被使用或输出。
    2. std::cout << “降采样中\n”, tt.tic() << std::endl;
      这个语句也使用了逗号运算符 ,。同样地,它会先输出字符串 “降采样中\n”,然后计算 tt.tic()。但是,这里的 tt.tic() 的返回值会被传递给 std::cout,然后再输出一个换行符 std::endl。

第二个语句不仅会输出字符串 “降采样中\n”,还会输出 tt.tic() 的返回值,并在最后添加一个换行符

这篇关于Ubuntu 20.04.06 PCL C++学习记录(二十一)【切记使用rm * -rf前先确认是否是对应文件夹】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891308

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同