48 全连接卷积神经网络 FCN【动手学深度学习v2】

2024-04-10 11:12

本文主要是介绍48 全连接卷积神经网络 FCN【动手学深度学习v2】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全连接卷积神经网络:神经网络处理语义分割问题的奠基性工作,目前已不太常用。

了解一下全卷积网络模型最基本的设计。 如 下图所示,全卷积网络先使用卷积神经网络抽取图像特征,然后通过1×1卷积层将通道数变换为类别个数,最后通过转置卷积层将特征图的高和宽变换为输入图像的尺寸。 因此,模型输出与输入图像的高和宽相同,且最终输出通道包含了该空间位置像素的类别预测。

知识补充:

只考虑精度不考虑速度的话推荐使用rcnn

出于对训练速度的考虑,本节网络中的1*1卷积层,将7*7*512的数据结构直接压缩到了7*7*class_num,造成了较大的信息损失,若要对预测效果进行进一步优化的话可以调节这一层

13.11. 全卷积网络icon-default.png?t=N7T8https://zh-v2.d2l.ai/chapter_computer-vision/fcn.html

全连接卷积神经网络(Fully Convolutional Neural Network,FCN)是一种特殊类型的卷积神经网络(CNN),主要用于图像语义分割任务。与传统的CNN不同,FCN通过完全使用卷积层来替代全连接层,从而实现对任意尺寸输入图像进行像素级别的预测。

传统的CNN通常包含卷积层和全连接层。卷积层用于提取图像的局部特征,而全连接层将卷积层的输出转换为固定长度的向量,用于分类任务。然而,全连接层对输入图像的尺寸有限制,无法处理变化尺寸的输入图像。

FCN通过将全连接层替换为卷积层,使得网络可以接受任意尺寸的输入图像,并且能够输出与输入图像尺寸相同的特征图。这种特性使得FCN非常适用于图像语义分割任务,其中目标是为每个像素分配一个语义标签。

FCN的关键思想是使用卷积层进行下采样和上采样操作,以保持空间信息。下采样通过使用具有较大步幅的卷积层或池化层来减小特征图的尺寸,同时增加特征图的深度。上采样通过使用转置卷积等操作将特征图的尺寸恢复到输入图像的尺寸,同时进行特征图的细化。

在FCN中,通常采用编码器-解码器结构。编码器部分由多个卷积层和池化层组成,用于提取图像的特征表示。解码器部分则通过上采样操作将低分辨率的特征图恢复到输入图像的尺寸,并生成像素级别的预测。此外,FCN通常使用跳跃连接(Skip Connections)来融合不同层级的特征,以提高分割结果的细节和准确性。

FCN在图像语义分割任务中取得了很大的成功,成为了一种重要的架构。它在许多计算机视觉领域的应用中广泛使用,如医学图像分析、自动驾驶、图像生成等。

这篇关于48 全连接卷积神经网络 FCN【动手学深度学习v2】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890905

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”