参数仅有0.049M!基于Mamba的医学图像分割新SOTA来了!

2024-04-10 01:52

本文主要是介绍参数仅有0.049M!基于Mamba的医学图像分割新SOTA来了!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目前,基于CNN和Transformer的医学图像分割面临着许多挑战。比如CNN在长距离建模能力上存在不足,而Transformer则受到其二次计算复杂度的制约。

相比之下,Mamba的设计允许模型在保持线性计算复杂度的同时,仍然能够捕捉到长距离的依赖关系。因此基于Mamba的医学图像分割能够结合CNN的局部特征提取能力和Transformer的全局上下文理解能力,更有效地处理医学图像中复杂的结构和模式。

以上海交大提出的VM-UNet为例:

作为首个将Mamba结构融入UNet的模型,VM-UNet引入了视觉态空间(VSS)块作为基础块以捕捉广泛的上下文信息,并构建了一个非对称的编码器-解码器结构。在ISIC17、ISIC18和Synapse数据集上超越UNet++/UNet v2等SOTA。

受此启发,研究者们提出了更多Mamaba医学图像分割改进方案,我整理了其中10个值得学习的最新成果分享,论文以及开源代码也列上了,方便同学们复现。

论文原文以及开源代码需要的同学看文末

UltraLight VM-UNet

UltraLight VM-UNet: Parallel Vision Mamba Significantly Reduces Parameters for Skin Lesion Segmentation

方法:论文提出了一种用于处理深层特征的并行Vision Mamba层(PVM层)。PVM层使用四个并行的VSS块来处理特征,每个VSS块处理的通道数是初始通道数的四分之一。由于Mamba中输入通道数对参数数量有爆炸性影响,处理四分之一通道数的VSS块参数只是原始VSS块参数的6.9%,减少了93.1%。

基于PVM层,作者提出了参数仅为0.049M,GFLOPs仅为0.060的UltraLight Vision Mamba UNet。UltraLight VM-UNet的参数比传统的纯Vision Mamba UNet模型(VM-UNet)低99.82%,比可用的最轻量级Vision Mamba UNet模型(LightM-UNet)低87.84%

创新点:

  • 提出了一种用于处理深度特征的并行视觉曼巴方法,名为PVM Layer,它在保持总体处理通道数不变的同时,以最低的计算负载实现了出色的性能。

  • 对曼巴参数影响的关键因素进行了深入分析,并基于此提出了用于处理深度特征的并行视觉曼巴层(PVM Layer)。

VM-UnetV2

VM-UNET-V2: Rethinking Vision Mamba UNetfor Medical Image Segmentation

方法:论文提出了VM-UnetV2算法,是对医学图像分割中基于SSM的算法的改进探索。作者在七个数据集上进行了详尽的实验,结果表明VM-UNetV2具有显著的竞争力。作者是首次将基于SSM的算法与Unet变种相结合的探索者,推动了更高效、更有效的基于SSM的分割算法的发展。

创新点:

  • 作者提出了VM-UnetV2,首次在医学图像分割中探索了更好的基于SSM的算法。

  • 在七个数据集上进行了全面的实验,结果表明VM-UNetV2展现出显著的竞争力。

  • 作者首次探索了将基于SSM的算法与Unet变体相结合,推动了更高效、更有效的基于SSM的分割算法的发展。

LMa-UNet

Large Window-based Mamba UNet for Medical Image Segmentation: Beyond Convolution and Self-attention

方法:论文引入了一种基于Mamba的UNet模型用于医学图像分割,实现了大窗口空间建模。此外,作者设计了一种分层和双向的SSM,进一步增强了Mamba在局部和全局特征建模方面的能力。

创新点:

  • 提出了基于大窗口的Mamba U-Net(LMa-UNet)用于二维和三维医学图像分割。相比于基于小核的CNN和基于小窗口的Transformer,LMa-UNet利用大窗口在局部空间建模方面具有优势,在全局建模方面保持了超过二次复杂度的自注意力的高效性能。

  • 设计了一种新颖的分层和双向的Mamba模块,进一步增强了Mamba在全局和局部空间建模能力。通过引入双向扫描,模型能够更好地关注图像中具有更多器官和病变的中心区域,并能够很好地对每个补丁的绝对位置信息和相对位置信息进行建模。

Mamba-UNet

Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation

方法:论文介绍了一种用于医学图像分割的纯视觉Mamba块基于UNet风格的网络,称为Mamba-UNet。研究结果表明,与UNet和Swin-UNet等经典相似网络相比,Mamba-UNet具有更好的性能。作者还计划将Mamba-UNet扩展到3D医学图像,并进行半/弱监督学习,以进一步推动医学成像领域的发展。

创新点:

  • Mamba-UNet:引入了一种纯视觉Mamba块为基础的UNet风格网络,用于医学图像分割。与经典的UNet和Swin-UNet等类似网络相比,Mamba-UNet表现出更出色的性能。

  • Visual Mamba块:在U-Net架构中引入了Visual Mamba块(VSS),以改善医学图像分析中的远距离依赖建模。这种创新提供了一种新的方法来处理长序列数据,并在医学图像分割领域中取得了优越的性能。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“曼巴医学”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于参数仅有0.049M!基于Mamba的医学图像分割新SOTA来了!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889781

相关文章

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.