参数仅有0.049M!基于Mamba的医学图像分割新SOTA来了!

2024-04-10 01:52

本文主要是介绍参数仅有0.049M!基于Mamba的医学图像分割新SOTA来了!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目前,基于CNN和Transformer的医学图像分割面临着许多挑战。比如CNN在长距离建模能力上存在不足,而Transformer则受到其二次计算复杂度的制约。

相比之下,Mamba的设计允许模型在保持线性计算复杂度的同时,仍然能够捕捉到长距离的依赖关系。因此基于Mamba的医学图像分割能够结合CNN的局部特征提取能力和Transformer的全局上下文理解能力,更有效地处理医学图像中复杂的结构和模式。

以上海交大提出的VM-UNet为例:

作为首个将Mamba结构融入UNet的模型,VM-UNet引入了视觉态空间(VSS)块作为基础块以捕捉广泛的上下文信息,并构建了一个非对称的编码器-解码器结构。在ISIC17、ISIC18和Synapse数据集上超越UNet++/UNet v2等SOTA。

受此启发,研究者们提出了更多Mamaba医学图像分割改进方案,我整理了其中10个值得学习的最新成果分享,论文以及开源代码也列上了,方便同学们复现。

论文原文以及开源代码需要的同学看文末

UltraLight VM-UNet

UltraLight VM-UNet: Parallel Vision Mamba Significantly Reduces Parameters for Skin Lesion Segmentation

方法:论文提出了一种用于处理深层特征的并行Vision Mamba层(PVM层)。PVM层使用四个并行的VSS块来处理特征,每个VSS块处理的通道数是初始通道数的四分之一。由于Mamba中输入通道数对参数数量有爆炸性影响,处理四分之一通道数的VSS块参数只是原始VSS块参数的6.9%,减少了93.1%。

基于PVM层,作者提出了参数仅为0.049M,GFLOPs仅为0.060的UltraLight Vision Mamba UNet。UltraLight VM-UNet的参数比传统的纯Vision Mamba UNet模型(VM-UNet)低99.82%,比可用的最轻量级Vision Mamba UNet模型(LightM-UNet)低87.84%

创新点:

  • 提出了一种用于处理深度特征的并行视觉曼巴方法,名为PVM Layer,它在保持总体处理通道数不变的同时,以最低的计算负载实现了出色的性能。

  • 对曼巴参数影响的关键因素进行了深入分析,并基于此提出了用于处理深度特征的并行视觉曼巴层(PVM Layer)。

VM-UnetV2

VM-UNET-V2: Rethinking Vision Mamba UNetfor Medical Image Segmentation

方法:论文提出了VM-UnetV2算法,是对医学图像分割中基于SSM的算法的改进探索。作者在七个数据集上进行了详尽的实验,结果表明VM-UNetV2具有显著的竞争力。作者是首次将基于SSM的算法与Unet变种相结合的探索者,推动了更高效、更有效的基于SSM的分割算法的发展。

创新点:

  • 作者提出了VM-UnetV2,首次在医学图像分割中探索了更好的基于SSM的算法。

  • 在七个数据集上进行了全面的实验,结果表明VM-UNetV2展现出显著的竞争力。

  • 作者首次探索了将基于SSM的算法与Unet变体相结合,推动了更高效、更有效的基于SSM的分割算法的发展。

LMa-UNet

Large Window-based Mamba UNet for Medical Image Segmentation: Beyond Convolution and Self-attention

方法:论文引入了一种基于Mamba的UNet模型用于医学图像分割,实现了大窗口空间建模。此外,作者设计了一种分层和双向的SSM,进一步增强了Mamba在局部和全局特征建模方面的能力。

创新点:

  • 提出了基于大窗口的Mamba U-Net(LMa-UNet)用于二维和三维医学图像分割。相比于基于小核的CNN和基于小窗口的Transformer,LMa-UNet利用大窗口在局部空间建模方面具有优势,在全局建模方面保持了超过二次复杂度的自注意力的高效性能。

  • 设计了一种新颖的分层和双向的Mamba模块,进一步增强了Mamba在全局和局部空间建模能力。通过引入双向扫描,模型能够更好地关注图像中具有更多器官和病变的中心区域,并能够很好地对每个补丁的绝对位置信息和相对位置信息进行建模。

Mamba-UNet

Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation

方法:论文介绍了一种用于医学图像分割的纯视觉Mamba块基于UNet风格的网络,称为Mamba-UNet。研究结果表明,与UNet和Swin-UNet等经典相似网络相比,Mamba-UNet具有更好的性能。作者还计划将Mamba-UNet扩展到3D医学图像,并进行半/弱监督学习,以进一步推动医学成像领域的发展。

创新点:

  • Mamba-UNet:引入了一种纯视觉Mamba块为基础的UNet风格网络,用于医学图像分割。与经典的UNet和Swin-UNet等类似网络相比,Mamba-UNet表现出更出色的性能。

  • Visual Mamba块:在U-Net架构中引入了Visual Mamba块(VSS),以改善医学图像分析中的远距离依赖建模。这种创新提供了一种新的方法来处理长序列数据,并在医学图像分割领域中取得了优越的性能。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“曼巴医学”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于参数仅有0.049M!基于Mamba的医学图像分割新SOTA来了!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889781

相关文章

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效