抓住风口,快速上手RAG应用开发!

2024-04-10 00:20

本文主要是介绍抓住风口,快速上手RAG应用开发!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

免责声明~

任何文章不要过度深思!

万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案」

不要急着评判文章列出的观点,只需代入其中,适度审视一番自己即可,能「跳脱出来从外人的角度看看现在的自己处在什么样的阶段」才不为俗人

怎么想、怎么做,全在乎自己「不断实践中寻找适合自己的大道」

2024年,大模型发展的脚步持续加快,你一定对 RAG(检索增强生成)有所耳闻,随大模型快速发展,RAG 作为一种新兴开发范式,能有效解决大模型的幻觉和知识停滞的问题,并已成为企业构建智能问答应用的最佳实践。

1 什么是RAG?

对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库。大型语言模型(LLM,Large Language Model)用海量数据进行训练,使用数十亿个参数为回答问题、翻译语言和完成句子等任务生成原始输出。

在 LLM 本就强大的功能基础上,RAG 将其扩展为能访问特定领域或组织的内部知识库,所有这些都无需重新训练模型。这是一种经济高效地改进 LLM 输出的方法,让它在各种情境下都能保持相关性、准确性和实用性。

2 为啥RAG很重要?

LLM 是一项关键的AI技术,为智能聊天机器人和其他自然语言处理(NLP)应用程序提供支持。目标是通过交叉引用权威知识来源,创建能够在各种环境中回答用户问题的机器人。但 LLM 技术本质在 LLM 响应中引入不可预测性。此外,LLM 训练数据是静态的,并引入其所掌握知识的截止日期。

LLM 面临已知挑战:

  • 在没有答案的情况下提供虚假信息

  • 当用户需要特定的当前响应时,提供过时或通用的信息

  • 从非权威来源创建响应

  • 由于术语混淆,不同的培训来源使用相同的术语来谈论不同的事情,因此会产生不准确的响应

可将LLM看作一个过于热情的新员工,他拒绝随时了解时事,但总是会绝对自信地回答每一个问题。不幸的是,这种态度会对用户的信任产生负面影响,这是您不希望聊天机器人效仿的!

RAG 是解决其中一些挑战的一种方法。它会重定向 LLM,从权威的、预先确定的知识来源中检索相关信息。组织可以更好地控制生成的文本输出,并且用户可以深入了解 LLM 如何生成响应。

3 RAG的好处

RAG 技术为组织的AIGC工作带来多项好处。

3.1 经济高效的实施

聊天机器人开发通常从[基础模型]开始。基础模型(FM)是在广泛的广义和未标记数据上训练的 API 可访问 LLM。针对组织或领域特定信息重新训练 FM 的计算和财务成本很高。RAG 是一种将新数据引入 LLM 的更加经济高效的方法。它使AIGC技术更广泛地获得和使用。

3.2 当前信息

即使 LLM 的原始训练数据来源适合您的需求,但保持相关性也具有挑战性。RAG 允许开发人员为生成模型提供最新的研究、统计数据或新闻。他们可以使用 RAG 将 LLM 直接连接到实时社交媒体提要、新闻网站或其他经常更新的信息来源。然后,LLM 可以向用户提供最新信息。

3.3 增强用户信任度

RAG 允许 LLM 通过来源归属来呈现准确的信息。输出可以包括对来源的引文或引用。如果需要进一步说明或更详细的信息,用户也可以自己查找源文档。这可以增加对您的生成式人工智能解决方案的信任和信心。

3.4 更多开发人员控制权

借助 RAG,开发人员可以更高效地测试和改进他们的聊天应用程序。他们可以控制和更改 LLM 的信息来源,以适应不断变化的需求或跨职能使用。开发人员还可以将敏感信息的检索限制在不同的授权级别内,并确保 LLM 生成适当的响应。此外,如果 LLM 针对特定问题引用了错误的信息来源,他们还可以进行故障排除并进行修复。组织可以更自信地为更广泛的应用程序实施生成式人工智能技术。

4 RAG的工作原理

如果没有 RAG,LLM 会接受用户输入,并根据它所接受训练的信息或它已经知道的信息创建响应。RAG 引入了一个信息检索组件,该组件利用用户输入首先从新数据源提取信息。用户查询和相关信息都提供给 LLM。LLM 使用新知识及其训练数据来创建更好的响应。

4.1 创建外部数据

LLM 原始训练数据集之外的新数据称为外部数据,可来自多个数据源如 API、数据库或文档存储库。数据可能以各种格式存在如文件、数据库记录或长篇文本。

另一种称为嵌入语言模型的 AI 技术将数据转换为数字表示形式并将其存储在向量数据库。这个过程会创建一个AIGC模型可以理解的知识库。

4.2 检索相关信息

下一步是执行相关性搜索。用户查询将转换为向量表示形式,并与向量数据库匹配。如考虑一个可回答组织的人力资源问题的智能聊天机器人。如员工搜索*:“我有多少年假?”*,系统将检索年假政策文件及员工个人过去的休假记录。这些特定文件将被退回,因为它们与员工输入的内容高度相关。相关性是使用数学向量计算和表示法计算和建立的。

4.3 增强 LLM 提示

接下来,RAG 模型通过在上下文中添加检索到的相关数据来增强用户输入(或提示)。此步骤使用提示工程技术与 LLM 进行有效沟通。增强提示允许大型语言模型为用户查询生成准确的答案。

4.4 更新外部数据

外部数据过时咋办?要维护当前信息以供检索,请异步更新文档并更新文档的嵌入表示形式。您可以通过自动化实时流程或定期批处理来执行此操作。这是数据分析中常见的挑战——可以使用不同的数据科学方法进行变更管理。

4.5 将 RAG 与 LLM 配合使用的概念流程

5 大厂的 RAG 系统学习教程

RAG 技术易于入门,但效果难提升:

  • 如何借助 RAG,最大限度发挥大模型的潜力?

  • 怎样轻松搭建你的专属 RAG 知识库与智能问答机器人?

  • RAG 又如何能够在企业级场景中高质量落地?

腾讯云开发者社区携手腾讯云向量数据库团队与腾讯云安灯团队,联合推出**《RAG 七天入门训练营》,将从基础理论到实际应用**,由鹅厂大牛带你快速学习 RAG,助你轻松上手AI Plus,玩转高质量 RAG 应用!

图片

这篇关于抓住风口,快速上手RAG应用开发!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889618

相关文章

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F