场景文本检测识别学习 day02(AlexNet论文阅读)

2024-04-09 21:20

本文主要是介绍场景文本检测识别学习 day02(AlexNet论文阅读),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

怎么读论文

  • 在第一遍阅读的时候,只需要看题目,摘要和结论,先看题目是不是跟我的方向有关,看摘要是不是用到了我感兴趣的方法,看结论他是怎么解决摘要中提出的问题,或者怎么实现摘要中的方法,然后决定我要不要继续看第二遍
  • 在第二遍阅读的时候不需要关注太过工程性的技巧,比如输入数据是怎么转换的,网络是怎么做分布式训练的,第二遍阅读重点关注方法上的创新或者方法上的技巧,因为工程上的技巧很复杂,不容易复现,但是方法上的创新相对比较简单

AlexNet论文精读感想

  • 在介绍部分,我们不能只介绍自己使用的方法,这很窄,比如我想用DETR,那我就不能只介绍DETR,我可以介绍一下传统的OCR,比如CNN,YOLO等
  • 对于图片领域来说,整个机器学习就是在做压缩,将本来人能看懂的输入图片,经过一个模型,最后压缩成一个向量,这个向量机器能够识别,机器能够学习之后,就能够拿它来做搜索、分类等各种各样的事情
  • 权重衰减(weight decay)在深度学习中等价于L2正则化,都是让权重w的更新额外包括一个权重衰减项 λ w k λw_k λwk,从而当权重特别大的时候,w的更新也会特别大。而往往刚开始的损失特别大,即模型会让权重w以特别大的步伐向较小的权重w迈进,最终导致不让模型学习到过大的权重,权重w的更新规则如下:
    在这里插入图片描述
  • 正则化是机器学习和统计建模中常用的一种技术,旨在减少模型的过拟合,提高模型的泛化能力。通过对模型添加约束或惩罚,正则化方法鼓励模型学习更加平滑或更简单的预测函数,从而不会对训练数据中的随机噪声做过度复杂的拟合。在实践中,这通常意味着对模型参数(如权重)的大小进行限制。
    • L1正则化:向损失函数添加参数的绝对值之和作为惩罚项。L1正则化倾向于产生稀疏的参数向量,即大多数参数值为零,这有助于特征选择,因为它可以自动忽略不重要的特征。
    • L2正则化:向损失函数添加参数的平方和作为惩罚项。L2正则化鼓励参数值趋向于较小的大小,从而避免任何参数对模型的预测产生过大的影响。这种方法对于处理参数间高度相关的数据特别有效。

这篇关于场景文本检测识别学习 day02(AlexNet论文阅读)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889249

相关文章

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,